Find the value of cos(15∘).
Solution:
We know that
cos(x−y)=cosx cosy+sinx siny
cos(x+y)=cosx cosy−sinx siny
∴cos(15∘)=cos(45∘−30∘)=cos(4π−6π)
=cos45∘cos30∘+sin45∘sin30∘
21×23+21×21=22(1+3)
2cosxcosy=cos(x−y)+cos(x+y)
2sinxsiny=cos(x−y)−cos(x+y)
Find the value of cos(7.5∘)=cos(215∘).
Solution:
We know that
cos(2x)=cos(x+x)
cos(2x)=cos2x−sin2x
cos(2x)=cos2x−(1−cos2x)
cos(2x)=2cos2x−1
cos(2x)=1−2sin2x
2cos2x=1+cos2x
cosx=±21+cos2x
cos 7.5∘=21+cos15∘
=sinx(x=y+2π)
=−sinx(x=y−2π)
sin(y+2π)=cos(y+2π−2π)=cos(y)
sin(y−2π)=−cos(y−2π+2π)=cos(y)
sinz=cos(z−2π)
∴sin(x−y)=cos(x−y−2π)
sin(x−y)=cos(x−(y+2π))
We know that,
cos(x−y)=cosx cosy+sinx siny
∴sin(x−y)=cosx cos(y+2π)+sinx sin(y+2π)
sin(x−y)=cosx (−siny)+sinx cosy
sin(x−y)=sinx cosy−cosx siny
sin(x+y)=sin(x−(−y))
∵sin(x−y)=sinx cosy−cosx siny
∴sin(x+y)=sinx cos(−y)−cosx sin(−y)
sin(x+y)=sinx cosy+cosx siny
sin(x−y)=sinx cosy−cosx siny⋯(i)
sin(x+y)=sinx cosy+cosx siny⋯(ii)
Add (i) & (ii) ,
2 sinx cosy=sin(x+y)+sin(x−y)
Subtract (ii) & (i) ,
2 cosx siny=sin(x+y)−sin(x−y)
sin(x+y)=sinx cosy+cosx siny
x=y
sin2x=sin(x+x)
sin2x=2sinxcosx
cos2x=2cos2x−1
cos2x=2(1−sin2x)−1
cos2x=1−2sin2x
∴sin2x=21−cos2x
sinx=±21−cos2x
x=7.5∘
sin 7.5∘=21−cos15∘
We know that
2cosx cosy=cos(x+y)+cos(x−y)
Let, x=2(A+B),y=2(A−B)
∴2cos2(A+B)×cos2(A−B)=cosA+cosB
We know that
2sinx siny=cos(x−y)−cos(x+y)
Let, x=2(A+B),y=2(A−B)
∴2sin2(A+B)×sin2(A−B)=cos(B)−cos(A)
We know that
2sin(x) cos(y)=sin(x+y)+sin(x−y)
Let x=2(A+B),y=2(A−B)
sin(A)+sin(B)=2sin2(A+B)×cos2(A−B)
∵sin(x+y)=sinxcosy+cosxsiny
& sin(x−y)=sinxcosy−cosxsiny
∴2cos(x) sin(y)=sin(x+y)−sin(x−y)
Let, x=2(A+B),y=2(A−B)
∴sin(A)−sin(B)=2cos2(A+B)×sin2(A−B)
cos(3x)=cos(2x+x)
cos(A+B)=cosAcosB−sinA sinB
cos(3x)=cos2x cosx−sin2x sinx
cos(3x)=(2cos2x−1)cosx−2sinx cosx sinx
cos(3x)=2cos3x−cosx−2cosx(1−cos2x)
cos(3x)=2cos3x−cosx−2cosx+2cos3x
cos(3x)=4 cos3x−3 cosx
sin(3x)=sin(2x+x)
sin(A+B)=sinAcosB+cosAsinB
sin(3x)=sin2x cosx+cos2x sinx
sin(3x)=2sinx cosxcosx+(1−2sin2x)sinx
sin(3x)=2sinx(1−sin2x)+sinx−2sin3x
sin(3x)=3sinx−4sin3x
tan(x)=ab
sin(x)=b
cos(x)=a
tan(x)=cos(x)sin(x)
tan(x)=ab=cosxsinx
tan(−x)=cos(−x)sin(−x)=cosx−sinx
tan(−x)=− tanx
tan(x+π)=cos(x+π)sin(x+π)=cosxcosπ−sinxsinπsinxcosπ+cosxsinπ=tanx
Similarly, tan(x−π)=tanx
tan(2π−x)=cos(2π−x)sin(2π−x)=sinxcosx
tan(2π−x)=tanx1=cotx (co- tangent)