$\cos (3x) = \cos (2x+x) $
$\cos (A+B) = \cos A \cos B -\sin A\ \sin B $
$\cos (3x) = \cos 2x\ \cos x -\sin 2x\ \sin x $
$\cos (3x) = (2\cos^ 2x - 1) \cos x \\ \quad \quad -2 \sin x\ \cos x \ \sin x $
$\cos (3x) = 2\cos^ 3x - \cos x \\ \quad \quad -2 \cos x (1- \cos^2 x ) $
$\cos (3x) = 2\cos^ 3x - \cos x -2 \cos x + 2 \cos^3 x $
$\cos (3x) = 4\ \cos^ 3x - 3\ \cos x $