$ QP ^2= (\cos x - \cos y) ^2 + (\sin x - \sin y) ^2 $
$ AR ^2= [\cos (x -y) - 1] ^2 + \sin ^2 (x-y) $
As,$ QP ^2 = (\cos x - \cos y) ^2 + (\sin x - \sin y ) ^2$
$= \cos ^2 x + \cos ^2 y -2 \cos x \cos y + \sin ^2 x + \sin ^2 y -2 \sin x \sin y $
$ = 1 + 1 -2 \cos x \cos y -2 \sin x \sin y $
======
###
$\text{Formula for} \cos (x-y) $
$ AR ^2 = [\cos (x- y) -1] ^2 + \sin ^2 (x -y) $
$ = \cos ^2 (x- y) +1 -2 \cos (x -y) + \sin ^2 (x-y)$
$ = 1 + 1 -2 \cos (x -y ) $
$\because QP ^2 = AR ^2$
$\Rightarrow \cos (x- y) = \cos x \cos y + \sin x \sin y $