cosx=0,
x=2π,23π
cos(x)=cos (x+k.2π)
x=(n+21)π ,n is integer.
cosθ=ACAB
sin(2π−θ)=ACAB
cosθ=sin(2π−θ)
cos(4π)=21
sin(4π)=21
△ ABC and △ ABD are congruent
3π+θ+θ=π, θ=3π
⇒△ADC is equilateral
⇒CD=1 unit
sin(6π)=21
sin(x)=b
sin(−x)=d
△OAP≅△OAQ
c=a
d=−b
sin(−x)=−b=−sin(x)
sin(−x)=−sin(x)
f(−x)=−f(x) ⇔ Odd functions
cos(x)=a
cos(−x)=a
cos(x)=cos(−x)
f(x)=f(−x) ⇔ Even functions
Quadrant | sin(x) | cos(x) |
---|---|---|
(I)0≤x<2π | [0,1) | (0,1] |
(II)2π≤x<π | (0,1] | (-1,0] |
(III)π≤x<23π | ||
(IV)23π≤x<2π |
△OPQ≅△OAR
OQ=OR
OP=OA
∠POQ=∠AOR
∠POQ=x−y
QP2=AR2
QP2=(cosx−cosy)2+(sinx−siny)2
AR2=[cos(x−y)−1]2+sin2(x−y)
As,QP2=(cosx−cosy)2+(sinx−siny)2
=cos2x+cos2y−2cosxcosy+sin2x+sin2y−2sinxsiny
=1+1−2cosxcosy−2sinxsiny
AR2=[cos(x−y)−1]2+sin2(x−y)
=cos2(x−y)+1−2cos(x−y)+sin2(x−y)
=1+1−2cos(x−y)
∵QP2=AR2
⇒cos(x−y)=cosxcosy+sinxsiny
∵cos(x−y)=cosxcosy+sinxsiny
cos(x+y)=cos(x−(−y))
cos(x+y)=cosxcos(−y)+sin(x)sin(−y)
cos(x+y)=cosxcosy−sin(x)sin(y)