Trigonometry
Cosine→cosθ=ACAB
Sine→sinθ=ACBC
tanθ=ABBC
tan30∘=S+10H=31
tan60∘=SH=3
Anti-clockwise rotation ⇒ positive angle
Clockwise rotation ⇒ negative angle
There are two popular ways to measure angle:
1)In Degree
2)In Radian
Angle subtended at the centre by an arc of length 1 unit in a unit circle (circle of radius 1 unit) is said to have a measure of 1 radian.
Arc length | Angle subtended at centre |
---|---|
1 UNIT | 1 RAD |
2 UNIT | 2 RAD |
3.17 UNIT | 3.17 RAD |
2 π UNIT | 2 π RAD |
1 complete Revolution = 2π RAD
Outer circle arc length | angle subtended at centre |
---|---|
x UNIT | 1 RAD |
2 π x | 2 π RAD |
⇒ 2 π R = 2 π x
⇒ x = R
Angle | Arc length |
---|---|
1 RAD | R |
2 RAD | 2 R |
3.98 RAD | 3.98 R |
θ RAD | θ R |
4π RAD = 4π×2π360∘=45°
135°=135°×3602π RAD
=(43π)RAD
The minute hand of a watch is 5 cm long. How far does its tip move in 42 minutes?
Solution:
1 complete revolution = 2π RAD
6042 of 1 revolution
=60422π RAD = 1.4π RAD
We know that, l = θ R
l =1.4π 5cm =22 cm
sin x=b and cos x=a
OA2+AP2=OP2
a2+b2=1
cos2x+sin2x=1
x=0,x=π
sin(x)=sin(x+k.2π)
for any integer k.
sinx=0⇔x=kπ