Let $A= \{1,2,3,4,5,6\}$
$R = \{(n, m) \in A \times A |n$ divides $m\}$
$= \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)$
$(2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}$
$(1,2) \in R$ but $(2,1) \not\in R$
$(2,6) \in R$ but $(6,2) \not\in R$
$\Rightarrow R$ is not a symmetric relation.