n(A)= no. of elements in A
n(A∪B)=n(A)+n(B)−n(A∩B)
n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)
Also, n(A)=n(A−B)+n(A∩B)
n(A)= no. of elements in A
n(A∪B)=n(A)+n(B)−n(A∩B)
n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)
Also, n(A)=n(A−B)+n(A∩B)
If n(A)=6,n(B)=4
What is the minimum & maximum value of n(A−B) ?
n(A)=n(A−B)+n(A∩B)
⇒n(A−B)=n(A)−n(A∩B)
=6−n(A∩B)
∵A∩B⊆B⇒n(A∩B)≤n(B)=4
∴n(A−B)≥6−4=2← Min. value
Also, if A∩B=ϕ,n(A∩B)=0
∴Max.n(A−B)=6−0=6
Also, 3 people read all three.
(i) n(H∪T∪I)
=25+10+5+12 =52
or use n(H∪T∪I)
=n(H)+n(T)+n(I)−n(H∩T)−n(T∩I)
−n(H∩I)+n(H∩T∩I)
(ii) From the Venn diagram,
Number of people who read exactly one =8+10+12=30
Let n(A∩B)=x,n(A−B)=6x
n(B−A)=8+2x,n(A)=n(B)
Find x.
n(A)=n(A−B)+n(A∩B)=6x+x=7x
n(B)=n(B−A)+n(B∩A)=8+2x+x=8+3x
∴7x=8+3x⇒x=2
Suppose 70% Indians like apple, and 82 % like mango. Let x % like both.
Find the min. & max. possible x.
Given: n(A)=70,n(M)=82
n(A∩M)=x
Since n(A∪M)≤100,
n(A)+n(M)−n(A∩M)≤100
⇒70+82−x≤100 ⇒x≥52
Also, A∩M⊆A
∴n(A∩M)≤n(A)=70 So, 52≤x≤70
Find nP(P(P(ϕ))).
[Recall : P(A)= all subsets of A.
n(P(A))=2n(A)]
Since n(ϕ)=0,n(P(ϕ))=20=1.
⇒n(P(P(ϕ)))=21=2
⇒n(P(P(P(ϕ))))=22=4.
If n(A)=m,n(B)=n,
n(P(A))−n(P(B))=112.
Find m and n.
Since, 2m−2n=112(⇒m>n)
⇒2n(2m−n−1)=112=16×7=24×7
⇒n=4 & 2m−n−1=7
⇒n=4 & 2m−n=8=23
⇒n=4 & m−n=3
⇒n=4 & m=7
A={1,2,3,4},B={2,4,6}
Find the no. of sets C such that
A∩B⊆C⊆A∪B.
A∩B={2,4}
A∪B={1,2,3,4,6}
So, {2,4} ⊆C ⊆{1,2,3,4,6} ⇒C={2,4} ∪C′
where C′⊆{1,3,6}
∴ Number of such C= Number of C′ ⊆{1,3,6}
=n(P({1,3,6})) =23=8.
Let X={4n−3n−1:n∈N}
Y={9(n−1):n∈N}
Then X∪Y equals
(a) N (b) Y−X
(c) X (d) Y.
X={0,9,54,⋯}
Y={0,9,18,27,⋯}
Clearly, 1∈/X∪Y
So, (a) is FALSE.
Also, Y⊈X(∵18∈Y,18∈/X)
∴X∪Y=X So, (c) is False.
Y−X=X∪Y because 0∈X∪Y but 0∈/Y−X.
By elimination (d) must be true if it is given that one of the staments is true.
Let’s try to prove this.
Claim: X⊆Y(⇒X∪Y=Y)
ie. 4n−3n−1 is divisible by 9 for all n∈N.
Note that for n=1:4n−3n−1=0 which is divisible by 9
Suppose 4k−3k−1 is divisible by 9 .
We’ ll show that 4k+1−3(k+1)−1 is also divisible by 9 .
4k+1−3(k+1)−1
=4(4k−3k−1)+9k ,which is divisible by 9.
A={n3+(n+1)3+(n+2)3:n∈N}
B={9n:n∈N}
Then which of the following is/are true?
(a) A⊆B
(b) B⊆A
(c) A=B
(d) A⊊B.
A={36,23+33+43,⋯}
Smallest no. in A is 36 .
So, A=B and B⊈A.
(b) & (c) are FALSE.
Claim: n3+(n+1)3+(n+2)3 is a multiple of 9 for every n∈N.
n3+(n+1)3+(n+2)3
=n3+(n3+3n2+3n+1)+(n3+6n2+12n+8)
=3n3+9n2+15n+9 =9(n2+1)+3n(n2+5)
Claim: n(n2+5) is a multiple of 3.
If n=3k, then O.K, If n=3k+1;n2+5=(3k+1)2+5
(3k+1)2+5=9k2+6k+6
which is a multiple of 3 .
Also, (3k+2)2+5=9k2+12k+4+5
=3(3k2+4k+3) multiple of 3 .
Hence, n3+(n+1)3+(n+2)3 is a multiple of 9 for all n∈N.
So, A⊊B .Hence (a) & (d) are correct. .