$A \cap B=\{2,4\}$
$A \cup B=\{1,2,3,4,6\}$
So, {$2,4$} $\subseteq C$ $\subseteq${$1,2,3,4,6$}
$\Rightarrow \quad C$={2,4} $\cup C^{\prime}$
$\text { where }C^{\prime} \subseteq${1,3,6}
$\therefore$ Number of such C= Number of $C^{\prime}$ $\subseteq${1,3,6}
$=n(P(${$1,3,6$}$)) $
$=2^3=8 .$