Chemical kinetics Lecture-14
Elementary reaction
Example
$\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{Br}+\mathrm{OH}^-$ $\rightarrow \mathrm{CH}_3 \mathrm{CH}_2 \mathrm{OH}+\mathrm{Br}^{-1}$
$\quad \quad \quad \downarrow$
Potential energy reaches maximum
The state where potential energy is maximum known transition state
Transition state is represented as $\left.\begin{array}{c}\text { (double }\text { dagger }\end{array}\right) \rightarrow \stackrel{\downarrow}{\neq}$
Consider a reaction
$A_2+B_2 \rightarrow 2 A B$
$\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{Br}+\mathrm{OH}^{-}$
Ea $\rightarrow$ attained through collisions between the reactants is known kinetic energy
$\mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{Cl}$ collides with it own molecules
$\mathrm{C}_6 \mathrm{H}_3 \mathrm{CH}_2 \mathrm{Cl}$ can also collide with the solvent molecules
Difference in potential energy between the products and reactants
Potential energy of products - Potential energy of reactant = enthalpy change
For reactions involving single reactant $\mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{Cl}$
Energy is needed to break the $\mathrm{C}-\mathrm{Cl}$ bond
There is no other reactant so Will collision be ruled out
Activated complex
The molecular species present at the transition state refered as ‘Activated complex’(Transient species)
Activated complex is not on intermediate
Examples of elementary reaction
$\mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_6\mathrm{H}_5 \mathrm{CH}_3 \mathrm{OH}\ +\mathrm{Cl}^{-}$
Step 1. $\mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{Cl} \rightarrow \mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2^{+}+\mathrm{Cl}^{-}$…(3)
Step 2. $\mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2{ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_6 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{OH}$…(4)
Molecularity
$A \rightarrow P$ $\text {unimolecular}$
$r=k[A] \text { unimolecular } $
$A+B \rightarrow P$ $\text {bimolecular}$
$r=k[A][B] \text { bimolecular } $
$2 A+B \rightarrow P$ $\text {termolecular}$
$r=k[A]^2[B]\text { termolecular }$
For an elementary reaction, molecularity and order are the same
The experimental overall order of an elementary reaction is the same as molecularity
Molecularity is a theoretical concept
Order is an experimental concept
Single - step reaction
Must proceed through only one transition state
Molecularity = overall order
Examples
$2 \mathrm{Br} \rightarrow \mathrm{Br}_2 $
$\mathrm{Br}+\mathrm{Br} \rightarrow \mathrm{Br}_2$
$r=k[\mathrm{Br}][\mathrm{Br}]$
$r=k\left[\mathrm{Br}\right]^2$
$ I_2 \rightarrow I+I $
$r=k\left[I_2\right]$
Important question of Molecularity
Question 1. First order reaction what can be said about its molecularity?
Answer- It is not told whether the first order reaction is elementary or not
Important points of molecularity
Molecularity applicable for an elementary reaction
This has no existence for a complex or composite reaction
Complex or composite reaction
Detection of reaction intermediates
Difficult to identify intermediates
Form of experimental rate equation
$\mathrm{ClO}^{-}\left(\mathrm{aq}\right)+I^{-}\left(\mathrm{aq}\right) \rightarrow \mathrm{Cl}^{-}\left(\mathrm{aq}\right)+I O^{-}\left(\mathrm{a}_q\right)$
$r=R\left[\mathrm{ClO}^{-}\right]\left[I^{-}\right]$
$r=k \frac{\left[\mathrm{ClO}^{-}\right]\left[I^{-}\right]}{\left[\mathrm{OH}^{-}\right]}$
Reaction is composite or complex in nature
Thank you