Chemical kinetics Lecture-12
Chemical kinetics
$\quad \quad \quad \quad \quad \quad \quad \quad \downarrow$
The distribution becomes broader
The peak of distribution shifts to higher value of kinetic energy
$\qquad\Downarrow$
Reaction
$\frac{E_a}{RT} \Rightarrow$ pure number (no dimension)
$E_a \Rightarrow kJ/mol \Rightarrow 1000 J mol^{-1}$
$R = 8.314 J K^{-1} mol^{-1}$
$T = K$
$\frac{E_a}{RT}$ = $\frac{J mol^{-1}}{J K^{-1} mol^{-1} K}$ = $\frac{J mol^{-1}} {J mol^{-1}} $
units of A = units of k
first order reaction
Arrhenius parameters
Determining the Arrhenius parameters
$k = A e^{-E_a/RT} \cdots (1)$
ln k = ln A + ln $e^{-E_a/RT} \cdots (2)$
ln k = ln A - $\frac{E_a}{RT}$
$2.303 log_{10} k = 2.303 log A - \frac{E_a}{RT}$
$2.303 log_{10} k = 2.303 log_{10}A - \frac{E_a}{RT}$
ln k = ln A -$\frac{E_a}{RT}$
ln k = -$\frac{E_a}{RT}$ + ln A
Assumptions
‘A’ and ‘$E_a$’ are independent of temperature
Magnitude of activation energy
Reactions
Two temperatures (K)
$T_1$ and $T_2$
$T_2 > T_1$
$k_1 \quad k_2$
ln $k_1$ = ln A - $\frac{E_a}{RT_1} \cdots (5)$
ln $k_2$ = ln A - $\frac{E_a}{RT_2} \cdots (6)$
ln $k_2$ - ln $k_1$ = [ln A - $\frac{E_a}{RT_2}$] - [ln A - $\frac{E_a}{RT_1}$]
ln $\frac{k_2}{k_1} = \frac{E_a}{R} [\frac{1}{T_1} - \frac{1}{T_2}] \cdots (7)$
Arrhenius reaction
r = k $[A]^{\alpha} [B]^\beta$
k = A $e^{-E_a/RT}$
A (Arrhenius factor)
Magnitude of $E_a$
Initial concentration of the reactants
Question
Enormous change
At 300k, which is very close to room temperature, a change in $E_a$ by a factor of ~10 leads to an enormous change in the exponential term covering over 16 orders of magnitude
Thus with in the temperature range it is generally valid to compare rates of different reactions solely on the basis of their $E_a$ values ! $\rightarrow$ Any effects due to changes in concentration or ‘A’ are virtually swamped out
Cyclobutene
Thank you