Chemical kinetics Lecture-7
Units of rate constant
First order reaction
Rate = k[A]
$k=\frac{rate}{[A]}=\frac{rate}{molL^{-1}}$
$k=\frac{rate}{[A]}$ $=\frac{molL^{-1}time^{-1}}{molL^{-1}}$
$k=time^{-1}$
$k=s^{-1}, min^{-1}, h^{-1}$
Second order reaction
$rate=k[A]^2$
$k=\frac{rate}{[A]^2}$ $=\frac{molL^{-1}time^{-1}}{(molL^{-1})^2}$
$k = mol^{-1}L \quad time^{-1}$
$k = L mol^{-1}time^{-1}$
Zero order reaction
$rate = k[A]^0$
rate = k
Unit of k = $mol L^{-1} time^{-1}$
Example
Reaction which is first order w.r.t.
A and first order w.r.t. B , reaction is happening between A and B.
Give the rate expression (assume time $\rarr$ minutes)
$rate=k[A]^1[B]^1$
$rate=k[A][B]$
Overall order= 1 + 1 = 2
$k=\frac{rate}{[A][B]}$ $=\frac{molL^{-1} min^{-1}}{[molL^{-1}][molL^{-1}]}$
$k = L mol^{-1} min^{-1}$
Reaction between A and B
First order w.r.t. A
Second order w.r.t. B
$rate=k[A]^1[B]^2$
$rate=k[A][B]^2$
Overall order= 1 + 2 = 3
$k=\frac{rate}{[A][B]^2}$ $=\frac{mol L^{-1} min^{-1}}{(mol L^{-1})(mol L^{-1})^2}$ $=L^2 mol^{-2} min^{-1}$
Significance of rate and rate constant
Rate will vary with the concentrations of your reactants
Rate is not of much use in quantifying reactions or comparing reactions
Rate constant is a constant at a given temperature and is independent of the concent reactions of the reactants and can easily be used to quantify and compare reactions
If you know the rate constant and the order of the reaction, you can write down the rate expression for that reaction
Integrated rate laws
Half-life
Preliminary check based on the kinetics profile
This is the time it takes for the concentration of the reactant to fall to one-half of its initial value
By Wilhelm Ostwald nobel prize in 1909
$[A]_0 \rarr$ initial value of the reactant
$t_{1/2} \rarr$ half-life
$t_{1/2}(1) \rarr$ first half-life
$t_{1/2}(2)\rarr$ second half-life
$t_{1/2}(3)\rarr$ third half-life
$t_{1/2}(1)=t_{1/2}(2)=t_{1/2}(3)$
Successive half-lives
$A\rarr P$
$\text{rate}=k[A]^0=k \dots (1)$
$\frac{d[A]}{dt}=k\dots (2)$
$d[A]=-kdt\dots (3)$
$\int_{[A]_0}^{[A]_t} d[A]=-\int_0^t k d t \dots(4)$
k is a constant and can be kept outside the integral
$[A]_t -[A]_0=-k(t-0)$
$[A]_t -[A]_0=-kt$
$[A]_t=[A]_0 -kt \dots (5)$
Half-life for a zero order reaction
$[A]0$ $\hspace{2mm}$ $t\frac{1}{2}$ $\rightarrow$ $\frac{1[A]_0}{2}$
$[A]_t=[A]_0 -kt \dots(5)$
$\frac{1}{2}[A]_0=[A]_0 -kt \dots(6)$
$kt_{1/2}=[A]_0-\frac{1}{2}[A]_0$
$kt_{1/2}=\frac{1}{2}[A]_0$
$t_{1/2}=\frac{[A]_0}{2k} \dots(7)$
Half-life is proportional to the concentration of the reactant
Higher concentartion
Higher Half-life
As a reaction proceeds then the half-life also decreases
Half-life being used as a preliminary check
Thank you