ElectrochemistryLecture-1
Electrochemistry Lecture-1
Conductance of electrolytic solutions
Good conductor - Almost fully conducting
Semi conductor - Partially conducting
Insulators - Not conducting
Difference between metallic conductor & electrolytic conductor
Some important points
Resistance (R)
$R \propto l$
$R \propto \frac{1}{A}$
$R \propto \frac{l}{A}$
or $R = \rho \frac{l}{A}$
$\rho \rightarrow \text{specific resistance}$
Conductance $= \frac{1}{R}$
Conductance $= \frac{1}{\rho} \cdot \frac{A}{l}$
Unit of resistance $Ohm$
Unit of conductance $Ohm^{-1}$ , mho, Siemens
$\frac{1}{\rho} \rightarrow \text{specific conductance or conductivity}$
Some important terms
$\text{Conductance} = \text{specific conductance} \times \frac{A}{l}$
$\Rightarrow \text{Specific Conductance} = \text{Conductance} \times \frac{l}{A}$
$\frac{l}{A} \rightarrow \text{cell constant}$
$\text{Specific conductance} = \text{conductance} \times \text{cell constant}$
Unit of Specific conductance= Siemens $\times \frac{l}{A}$ $= S m^{-1}$
For unknown resistance Wheatstone bridge principal is used
$\frac{R_1}{R_2} = \frac{R_3}{R_4}$
$R_1 = \frac{R_3}{R_4} \cdot R_2 (\text{Balance point})$
Specific conductance or conductivity$(\kappa)$
Molar conductance
Molar Conductance ($\lambda_{m}$)
$\lambda_m = \frac{\kappa}{c} $
$\kappa \rarr Sm^{-1}$, $\qquad$
$C = mol$ $m^{-3}$
$\lambda_m \rightarrow Sm^2 mol^{-1}$
No. of ions
Charge of the ions $M_{(1)}^{+}, M_{(2)}^{2+}, M_{(3)}^{3+}$
Speed of ions
Important terms
1M NaCl diluted into $10^{-2}$ solution and its conductance is x Siemens then diluted into $\frac{1}{2}10^{-2}M$ solutionof NaCl then its expected conductance is is reduced
Specific conductance $\times$ cell constant
No. of ions $\downarrow$
Charge on ion $\rightarrow$ no change
Speed of ions $\rightarrow$ no change
Molar Conductance $(\lambda_m)= \frac{\kappa}{C}$
Unit of C(mol / m 3)
As length(l) = 1, so V = $A\times l = A$
$ \lambda_m = \kappa \frac{A}{l}\Rightarrow \lambda_m$ = $\kappa\times{V}$
$\kappa$ decrease on dilution
V increases on dilution
$ \lambda_m$ increases on dilution
$\lambda_m vs \sqrt {C}\text{for weak electrolyte}$
C H 3 C O O H → Weak electrolyte
$\underset{\substack{\mathrm{(1-\alpha)}}}{\mathrm{CH}_3 \mathrm{COOH}} \rightleftharpoons \underset{\alpha}{\mathrm{H}^{+}}+\underset{\alpha}{\mathrm{CH}_3 \mathrm{COO}^{-}}$
λ m = K V
λ m = λ m 0 + A C
$\lambda_m^{o} \rightarrow$ Molar Conductance at infinite dilution
Köhlrausch law of independent migration of ions
$\Lambda_m^{o}(KCl) - \Lambda_m^{o} (NaCl)$
$ =\Lambda_m^{\circ}(K{Br})-\Lambda_m^{\circ}\left(Na{Br}\right)$
$=\lambda^0_m(KI)$ - $\lambda^0_m(NaI)$ $\sim 23 \mathrm{Scm}^2 \mathrm{~mol}^{-1}$
$\lambda^0_m(NaBr)$ - $\lambda^0_m(NaCl)$ = $\lambda^0_m(KBr)$ - $\lambda^0_m(KCl)$ $\sim 23 \mathrm{Scm}^2 \mathrm{~mol}^{-1}$
$\lambda^0_m(KCl)$ = $\lambda^0_m(K^+)$ + $\lambda^0_m(Cl^-)$
$\lambda^o (S cm mol^{-1})\text {for different ions}$
$\lambda^o$ (S cm $mol^{-1}$)
$H^+-349.6$
$OH^- {-} 199.1$
$K^+-73.5$
$Cl^- {-}76.3$
$\lambda^0_m$ Weak Electrolyte
Thank you