Solution
V = 350 mL = 0.350 L
T=20oC=(273+20)K
T = 293 K
n=Molecule massmass
Propane - CH3,CH2,CH3
Molar mass = 44 g / mol
n=44gmol−13.2g
Solution
P=Vn R T
P=0.350 L(44 g mole−13.2 g)×(0.82 L atm K−1 mol−1)×293K
P=[]atm
What is the density in g L−1 of ammonia at 0oC and 1 atm of the gas in a 1.000 L bulbs weights 0.672g at 23 0C and 733.4 mm Hg pressure
Solution
PV=nRT
n=MmPV=MmRT
P=M1.Vm.RT
Vm→density
Solution
P=MρRT
P = 1 atm
T=25oC=298K
V=1.000 L
m=0.672 g/MNH3=17 g mol−1
ρ=733.4 mm Hg
P⎩⎨⎧ bar atm mm Hg/torr
760 mm Hg−1 atm
733 m Hg−? atm
Solution
NO2(Th)(Initial) cooled NO2+N2O4(Te)(Funal)
law T:2 NO2(g)→N2 O4(g)
n=15.2 g of NO2(nNO2o)
MNO2=46 g mol−1
nf= nNO2f+2 nN2O4f=n0= nNO20
Solution
Ptotal=0.500 atm
P=VnNO2fRT+VnN2O4RT
P=PNO2+PN2O4
V=10.0 L/ T=25oC=298 K
R=0.082 L atm K −1 mol−1
R=0.500 atm=(VRT)
{nNO2f+nN2O4f}
Automobile air bags are inflated by nitrogen gas generated by the rapid decomposition of sodium azide
NaN3(s):2NaN3(s)→2Na(s)+3N2(g)
If an air bag has a volume of 36 L and is to be filled with nitrogen gas at 1.15 atm and 26oC , how many grams of NaN3 , must be decomposed
Solution
NaN3(s)→high density small volume
2Na N3(s)→2Na(s)+3N2(g)
V = 36 L
P = 1.15 atm
T=26oC(nN2)
PV = n R T
Solution
3N2→2 moles of NaN3
nN2→? nNaN3
nNaN3=MNaN3mNaN3
mNaN3
Molar volume at 0oC (273K)and 1 atm
MoleculeVolume
2e− [H2H222.41522.428
10e−NH3CH4Ne22.07722.36022.428
14e−[C2H2CO22.27422.405
Molar volume close to 22.4 L but not equal
Z=nRTPV
Z = 1 for an ideal gas