(b) When the charge $q$ is place at $B$, middle point of an edge of the cube, it is being shared equally by 4 cubes. Therefore, total flux through the faces of the given cube $=q / 4 \varepsilon_0$.
(c) When the charge $q$ is placed at $C$, the centre of a face of the cube, it is being shared equally by 2 cubes. Therefore, total flux through the faces of the given cube $=q / 2 \varepsilon_0$.
(d) Similarly, when charge $q$ is placed at $Q$, the mid-point of $B$ and $C$, it is being shared equally by 2 cubes. Therefore, total flux through the faces of the given cube $=q / 2 \varepsilon_0$.