$\therefore \lambda_p: \lambda_n: \lambda_e: \lambda _{\alpha}$
$\Rightarrow \frac{1}{\sqrt{m_p}}: \frac{1}{\sqrt{m_n}}: \frac{1}{\sqrt{m_e}}: \frac{1}{\sqrt{m _{\alpha}}}$
Since, $ m_p=m_n$, hence ${\lambda} _{p}=\lambda_n$
As, $ m _{\alpha}>m_p$, therefore $\lambda _{\alpha}<\lambda_p$
As, $ m_e<m_n$, therefore $\lambda_e>\lambda_n$
Hence, $ \lambda _{\alpha}<\lambda_p=\lambda_n<\lambda_e$