Acknowledgement and Disclaimer
$\quad$ $\quad$ **Acknowledgements and Disclaimer !!** • The images/contents are used for teaching purpose. The copyright remains with the original creator. If you suspect a violation, bring it to my notice and we will remove that part...
$\quad$ $\qquad$ **अभिस्वीकृति और अस्वीकरण !!** - चित्रों/सामग्री का उपयोग शिक्षण उद्देश्य के लिए किया जाता है। कॉपीराइट मूल निर्माता के पास रहता है। यदि आपको किसी उल्लंघन का संदेह है, तो इसे हमारे ध्यान में लाएं और हम उस हिस्से को हटा देंगे...
====== $\quad$ $\quad$ $\quad$ ###
Properties of Inverse Trigonometric Functions
======
Inverse Trigonometric Functions
####
Outline
- $\sin (\sin ^{-1} x)=x$ - $\sin^{-1}(-x) = -\sin^{-1}(x)$ - $\operatorname{cos}^{-1}(-x)=\pi-\operatorname{cos}^{-1}(x)$ - $\operatorname{sin}^{-1} x+\operatorname{cos}^{-1} x=\pi / 2$
======
Inverse Trigonometric Functions
####
$\sin (\sin ^{-1} x)=x$
If $y=\sin ^{-1} x$, then $x=\sin y$ and if $x=\sin y$, then $y=\sin ^{-1} x$. This is equivalent to $\sin (\sin ^{-1} x)=x, x \in[-1,1] \text { and }$ $ \sin ^{-1}(\sin x)=x, x \in[\frac{-\pi}{2}, \frac{\pi}{2}] $
यदि y = sin⁻¹ x है, तो x = sin y है और यदि x = sin y है, तो y = sin⁻¹ x है। यह निम्न के समतुल्य है: $ \sin (\sin ^{-1} x)=x, x \in[-1,1] \text { and }$ $ \sin ^{-1}(\sin x)=x, x \in[\frac{-\pi}{2}, \frac{\pi}{2}] $
======
Inverse Trigonometric Functions
####
$\sin^{-1}(-x) = -\sin^{-1}(x)$
Proof: 1. $\sin ^{-1}(-x)=-\sin ^{-1}(x)$ Let $\sin ^{-1}(-x)=y$, i.e., $-x=\sin y$ $\Rightarrow \mathrm{x}=-\sin \mathrm{y}$ Thus, $$ x=\sin (-y) $$ Or,
**सिद्ध:** 1. $\sin^{-1}(-x) = -\sin^{-1}(x)$ मान लें $\sin^{-1}(-x) = y$, अर्थात, $-x = \sin y$ $\Rightarrow x = -\sin y$ अतः, $$ x = \sin (-y) $$ या,
======
Inverse Trigonometric Functions
####
$\sin^{-1}(-x) = -\sin^{-1}(x)$
Proof: Or, $$ \sin ^{-1}(\mathrm{x})=-\mathrm{y}=-\sin ^{-1}(-\mathrm{x}) $$ Therefore, $\sin ^{-1}(-x)=-\sin ^{-1}(x)$ Similarly, using the same concept following results can be obtained: - $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x,|x| \geq 1$ - $\tan ^{-1}(-x)=-\tan ^{-1} x, x \in R$
**सिद्ध: ** $$ \sin^{-1}(x) = -y = -\sin^{-1}(-x) $$ इसलिए, $\sin^{-1}(-x) = -\sin^{-1}(x)$ इसी तरह, समान अवधारणा का उपयोग करके निम्नलिखित परिणाम प्राप्त किए जा सकते हैं: - $\operatorname{cosec}^{-1}(-x) = -\operatorname{cosec}^{-1} x, |x| \geq 1$ (नोट: x का निरपेक्ष मान 1 से बराबर या अधिक होना चाहिए) - $\ tan^{-1}(-x) = -\ tan^{-1} x, x \in R$ (नोट: x सभी वास्तविक संख्याओं के समुच्चय R का सदस्य हो सकता है)
======
Inverse Trigonometric Functions
####
$\operatorname{Cos}^{-1}(-x)=\pi-\operatorname{Cos}^{-1}(x)$
$\operatorname{Cos}^{-1}(-x)=\pi-\operatorname{Cos}^{-1}(x)$ Proof: Let $\cos ^{-1}(-x)=y$ i.e., $-x=\cos y$ $$ \Rightarrow \mathrm{x}=-\cos \mathrm{y}=\cos (\pi-\mathrm{y}) $$ Thus, $$ \cos ^{-1}(\mathrm{x})=\pi-\mathrm{y} $$ Or, $$ \cos ^{-1}(\mathrm{x})=\pi-\cos ^{-1}(-\mathrm{x}) $$
======
Inverse Trigonometric Functions
####
More Properties
Similarly using the same concept following results can be obtained: - $\sec ^{-1}(-\mathrm{x})=\pi-\sec ^{-1} x_r|x| \geq 1$ - $\cot ^{-1}(-\mathrm{x})=\pi-\cot ^{-1} \mathrm{x}, \mathrm{x} \in \mathrm{R}$ - $\operatorname{Tan}^{-1}(-x)=-\operatorname{Tan}^{-1}(x)$ - $\operatorname{Cosec}^{-1}(-x)=-\operatorname{Cosec}^{-1}(x)$ - $\operatorname{Sec}^{-1}(-x)=\pi-\operatorname{Sec}^{-1}(x)$ - $\operatorname{Cot}^{-1}(-x)=\pi-\operatorname{Cot}^{-1}(x)$
======
Inverse Trigonometric Functions
####
Properties
- $\operatorname{Sin}^{-1}(x)=\operatorname{cosec}^{-1}(1 / x), x \in[-1,1]-\\{0\\}$ - $\cos ^{-1}(x)=\sec ^{-1}(1 / x), x \in[-1,1]-\\{0\\}$ - $\operatorname{Tan}^{-1}(x)=\cot ^{-1}(1 / x)$, if $x>0$ (or) $\cot ^{-1}(1 / x)-\pi$, if $x<0$ - $\operatorname{Cot}^{-1}(x)=\tan ^{-1}(1 / x)$, if $x>0$ (or) $\tan ^{-1}(1 / x)+\pi$, if $x<0$
======
Inverse Trigonometric Functions
####
$\operatorname{Sin}^{-1} x+\operatorname{Cos}^{-1} x=\pi / 2$
Proof: $\sin ^{-1}(x)+\cos ^{-1}(x)=(\pi / 2), x \in[-1,1]$ Let $\sin ^{-1}(x)=y$, i.e., $x=\sin y=\cos ((\pi / 2)-y)$ $\Rightarrow \cos ^{-1}(x)=(\pi / 2)-y=(\pi / 2)-\sin ^{-1}(x)$ Thus, $$ \sin ^{-1}(x)+\cos ^{-1}(x)=(\pi / 2) $$ Similarly using the same concept following results can be obtained: - $\tan ^{-1}(x)+\cot ^{-1}(x)=(\pi / 2), x \in R$ - $\operatorname{cosec}^{-1}(x)+\sec ^{-1}(x)=(\pi / 2),|x| \geq 1$
मान लें $\sin^{-1}(x) = y$, अर्थात, $x = \sin y = \cos ((\pi / 2) - y)$ (कोज्या का पूरक कोण तंत्रज्ञान) $\Rightarrow \cos^{-1}(x) = (\pi / 2) - y = (\pi / 2) - \sin^{-1}(x)$ अतः, $$ \sin^{-1}(x) + \cos^{-1}(x) = (\pi / 2) $$ इसी तरह, समान अवधारणा का उपयोग करके निम्नलिखित परिणाम प्राप्त किए जा सकते हैं: - $\ tan^{-1}(x) + \cot^{-1}(x) = (\pi / 2)$, जहाँ x ∈ R - $\operatorname{cosec}^{-1}(x) + \sec^{-1}(x) = (\pi / 2)$, जहाँ |x| ≥ 1
======
Inverse Trigonometric Functions
####
$\operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y$
(1) If $x, y>0$ $$ \operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y=\left\\{\begin{array}{c} \tan ^{-1}\left(\frac{x+y}{1-x y}\right) x y<1 \\\\ \pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) x y>1 \end{array}\right. $$ Proof: $\operatorname{Tan}^{-1}(x)+\tan ^{-1}(y)=\tan ^{-1}[(x+y) /(1-x y)], x y<1$ Let $\tan ^{-1}(x)=\alpha$ and $\tan ^{-1}(y)=\beta$, i.e., $x=\tan (\alpha)$ and $y=\tan (\beta)$ $\Rightarrow \tan (\alpha+\beta)=(\tan \alpha+\tan \beta) /(1-\tan \alpha \tan \beta)$ Thus, $(\alpha)+(\beta)=\tan ^{-1}[(x+y) /(1-x y)]$ Therefore, $$ \tan ^{-1}(\mathrm{x})+\tan ^{-1}(\mathrm{y})=\tan ^{-1}[(\mathrm{x}+\mathrm{y}) /(1-\mathrm{xy})] $$
======
Inverse Trigonometric Functions
####
$\operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y$
- If $\mathrm{x}, \mathrm{y}<0$ $$ \operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y=\left\\{\begin{array}{c} \tan ^{-1}\left(\frac{x+y}{1-x y}\right) x y<1 \\\\ -\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) x y<1 \end{array}\right. $$ - $\tan ^{-1}(x)-\tan ^{-1}(y)=\tan^ {-1}[(x-y) /(1+x y)], x y>-1$ - $2 \tan ^{-1}(x)=\tan ^{-1}\left[(2 x) /\left(1-x^2\right)\right],|x|<1$
======
Inverse Trigonometric Functions
####
Example
**Example 3** Show that (i) $\sin ^{-1}(2 x \sqrt{1-x^{2}})=2 \sin ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$ (ii) $\sin ^{-1}(2 x \sqrt{1-x^{2}})=2 \cos ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1$
======
Inverse Trigonometric Functions
####
Solution
**Solution** (i) Let $x=\sin \theta$. Then $\sin ^{-1} x=\theta$. We have $$ \begin{aligned} \sin ^{-1}(2 x \sqrt{1-x^{2}}) & =\sin ^{-1}(2 \sin \theta \sqrt{1-\sin ^{2} \theta}) \\\\ & =\sin ^{-1}(2 \sin \theta \cos \theta)=\sin ^{-1}(\sin 2 \theta)=2 \theta \\\\ & =2 \sin ^{-1} x \end{aligned} $$ (ii) Take $x=\cos \theta$, then proceeding as above, we get, $\sin ^{-1}(2 x \sqrt{1-x^{2}})=2 \cos ^{-1} x$
======
Inverse Trigonometric Functions
####
Example
**Example 4** Express $\tan ^{-1} \frac{\cos x}{1-\sin x},-\frac{3 \pi}{2}
======
Inverse Trigonometric Functions
####
Solution
**Solution** $$ \begin{aligned} \tan ^{-1}(\frac{\cos x}{1-\sin x}) & =\tan ^{-1}[\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}] \\\\ & =\tan ^{-1}[\frac{(\cos \frac{x}{2}+\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})}{(\cos \frac{x}{2}-\sin \frac{x}{2})^{2}}] \\\\ & =\tan ^{-1}[\frac{\cos \frac{x}{2}+\sin \frac{x}{2}}{\cos \frac{x}{2}-\sin \frac{x}{2}}]=\tan ^{-1}[\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}] \\\\ & =\tan ^{-1}[\tan (\frac{\pi}{4}+\frac{x}{2})]=\frac{\pi}{4}+\frac{x}{2} \end{aligned} $$
======
Inverse Trigonometric Functions
####
Example
**Example 5** Write $\cot ^{-1}(\frac{1}{\sqrt{x^{2}-1}}), x>1$ in the simplest form.
======
Inverse Trigonometric Functions
####
Solution
**Solution** Let $x=\sec \theta$, then $\sqrt{x^{2}-1}=\sqrt{\sec ^{2} \theta-1}=\tan \theta$ Therefore, $\cot ^{-1} \frac{1}{\sqrt{x^{2}-1}}=\cot ^{-1}(\cot \theta)=\theta=\sec ^{-1} x$, which is the simplest form.
======
Inverse Trigonometric Functions
####
English
Hindi
====== ####
Don't forget to:
- Register yourself and give subject-wise mock test. 👉 https://jeetest.prutor.ai/ - Register yourself and ask any doubt regarding these video lectures or any subject doubt. 👉 https://satheeqrcode.web.app/ - Here you can find "how to videos" 👉 https://www.youtube.com/watch?v=MT3b32wKnmU
- अपना रजिस्ट्रेशन करें और विषयवार मॉक टेस्ट दें। 👉 https://jeetest.prutor.ai/ - स्वयं को पंजीकृत करें और इन वीडियो व्याख्यानों के संबंध में कोई संदेह या किसी विषय पर संदेह पूछें। 👉 https://satheeqrcode.web.app/ - यहां आप "पंजीकरण कैसे करें" पा सकते हैं - 👉 https://www.youtube.com/watch?v=MT3b32wKnmU
====== $\quad$ $\quad$ $\quad$ ###
Thank you