$$\small{
\Delta S^{\circ}=n F\left(\partial E^{\circ} / \partial T\right)_P
}$$
###### **
Derivation**
Maxwell equation:
$$\scriptsize{
\mathrm{\partial G}=\mathrm{V \partial P}-\mathrm{S\partial T}
}$$
$\scriptsize{\therefore}$ At constant pressure,
$\scriptsize{\mathrm{\partial P}=0}$
$$\scriptsize{
\begin{aligned}
& \therefore \mathrm{\partial G}=-\mathrm{S\partial T} \\
& \therefore \mathrm{S}=-\left(\frac{\mathrm{\partial G}}{\mathrm{\partial T}}\right)_{\mathrm{P}}
\end{aligned}
}$$
$$\small{
\Delta S^{\circ}=n F\left(\partial E^{\circ} / \partial T\right)_P
}$$
###### **
व्युत्पत्ति**
मैक्सवेल समीकरण:
$$\scriptsize{
\mathrm{\partial G}=\mathrm{V \partial P}-\mathrm{S\partial T}
}$$
$\scriptsize{\therefore}$ निरंतर दबाव पर,
$\scriptsize{\mathrm{\partial P}=0}$
$$\scriptsize{
\begin{aligned}
& \therefore \mathrm{\partial G}=-\mathrm{S\partial T} \\
& \therefore \mathrm{S}=-\left(\frac{\mathrm{\partial G}}{\mathrm{\partial T}}\right)_{\mathrm{P}}
\end{aligned}
}$$