Also, R=8.314JK−1mol−1
Now, substituting these values in the equation:
logk1k2=2.303REa[T1T2T2−T1]
We get:
logk2k=2.303×8.314Ea[298×30810]⇒log2=2.303×8.314Ea[298×30810]⇒Ea=102.303×8.314×298×308×log2=52897.78Jmol−1=52.9kJmol−1
साथ ही, R=8.314JK−1mol−1
अब, इन मानों को समीकरण में प्रतिस्थापित करें:
logk1k2=2.303REa[T1T2T2−T1]
हम पाते हैं:
logk2k=2.303×8.314Ea[298×30810]⇒log2=2.303×8.314Ea[298×30810]⇒Ea=102.303×8.314×298×308×log2=52897.78Jmol−1=52.9kJmol−1