Vectors - Problems - Geometry of Cross Product
- In this lecture, we will solve problems related to the geometry of cross product
- The cross product of two vectors gives a vector perpendicular to both vectors
- We will use the properties of cross product to solve various geometrical problems
Example 1: Finding the Area of a Triangle
- Given two vectors: $\vec{A} = \begin{bmatrix} 3 \ 2 \ 1 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix} 1 \ -1 \ 4 \end{bmatrix}$
- To find the area of the triangle formed by these vectors, we can take the magnitude of their cross product
- $\vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \ 3 & 2 & 1 \ 1 & -1 & 4 \end{vmatrix} = 10i + 11j + 5k$
- The magnitude of $\vec{A} \times \vec{B}$ is $\sqrt{10^2 + 11^2 + 5^2} = \sqrt{246}$
- Therefore, the area of the triangle is $\frac{1}{2} \sqrt{246}$
Example 2: Finding the Angle between Two Vectors
- Given two vectors: $\vec{A} = \begin{bmatrix} 2 \ 1 \ 3 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$
- The angle $\theta$ between the vectors is given by the equation $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{\lVert \vec{A} \rVert \lVert \vec{B} \rVert}$
- $\vec{A} \cdot \vec{B} = 2 \cdot 1 + 1 \cdot 2 + 3 \cdot (-1) = -1$
- $\lVert \vec{A} \rVert = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$
- $\lVert \vec{B} \rVert = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6}$
- Therefore, $\cos \theta = \frac{-1}{\sqrt{14} \cdot \sqrt{6}}$
- $\theta = \arccos \left(\frac{-1}{\sqrt{84}}\right)$
Example 3: Finding the Projection of a Vector
- Given two vectors: $\vec{A} = \begin{bmatrix} 3 \ 1 \ -2 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix} 4 \ -2 \ 1 \end{bmatrix}$
- The projection of $\vec{A}$ onto $\vec{B}$ is given by the equation $\text{proj}_{\vec{B}} \vec{A} = \frac{\vec{A} \cdot \vec{B}}{\lVert \vec{B} \rVert^2} \cdot \vec{B}$
- $\vec{A} \cdot \vec{B} = 3 \cdot 4 + 1 \cdot (-2) + (-2) \cdot 1 = 10$
- $\lVert \vec{B} \rVert^2 = 4^2 + (-2)^2 + 1^2 = 21$
- Therefore, $\text{proj}_{\vec{B}} \vec{A} = \frac{10}{21} \cdot \begin{bmatrix} 4 \ -2 \ 1 \end{bmatrix}$
To continue with the lecture, please refer to the next set of slides.
Sure! Here are slides 11 to 20:
Slide 11
- Example 4: Finding the Equations of Planes
- Given three points: $P(1, 2, 3)$, $Q(0, -1, 2)$, $R(-2, 3, 1)$
- To find the equation of the plane passing through these points, we can use the cross product of two vectors formed by the points
- $\vec{PQ} = \begin{bmatrix} 0-1 \ -1-2 \ 2-3 \end{bmatrix} = \begin{bmatrix} -1 \ -3 \ -1 \end{bmatrix}$
- $\vec{PR} = \begin{bmatrix} -2-1 \ 3-2 \ 1-3 \end{bmatrix} = \begin{bmatrix} -3 \ 1 \ -2 \end{bmatrix}$
- The equation of the plane is given by the equation $\vec{n} \cdot \vec{r} = \vec{n} \cdot \vec{P}$, where $\vec{n}$ is the normal vector to the plane and $\vec{r}$ is a position vector on the plane
- Using $\vec{PQ}$ and $\vec{PR}$, we can find the normal vector $\vec{n} = \vec{PQ} \times \vec{PR}$
- Therefore, the equation of the plane is $-x - 2y - z = -9$
Slide 12
- Example 5: Finding the Volume of a Parallelepiped
- Given three vectors: $\vec{A} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$, $\vec{B} = \begin{bmatrix} 2 \ 3 \ -1 \end{bmatrix}$, $\vec{C} = \begin{bmatrix} 5 \ 1 \ -2 \end{bmatrix}$
- The volume of the parallelepiped formed by these vectors is given by $|\vec{A} \cdot (\vec{B} \times \vec{C})|$
- $\vec{B} \times \vec{C} = \begin{vmatrix} i & j & k \ 2 & 3 & -1 \ 5 & 1 & -2 \end{vmatrix} = 5i + 13j + 17k$
- $\vec{A} \cdot (\vec{B} \times \vec{C}) = 1 \cdot 5 + 2 \cdot 13 + 3 \cdot 17 = 88$
- Therefore, the volume of the parallelepiped is $|88|$
Slide 13
- Example 6: Finding the Scalar Triple Product
- Given three vectors: $\vec{A} = \begin{bmatrix} -2 \ 1 \ 3 \end{bmatrix}$, $\vec{B} = \begin{bmatrix} 4 \ -1 \ 2 \end{bmatrix}$, $\vec{C} = \begin{bmatrix} 3 \ 2 \ -1 \end{bmatrix}$
- The scalar triple product of these vectors is given by $[\vec{A}, \vec{B}, \vec{C}] = \vec{A} \cdot (\vec{B} \times \vec{C})$
- $\vec{B} \times \vec{C} = \begin{vmatrix} i & j & k \ 4 & -1 & 2 \ 3 & 2 & -1 \end{vmatrix} = 7i + 14j - 11k$
- $\vec{A} \cdot (\vec{B} \times \vec{C}) = -2 \cdot 7 + 1 \cdot 14 + 3 \cdot (-11) = -54$
- Therefore, $[\vec{A}, \vec{B}, \vec{C}] = -54$
Slide 14
- Example 7: Checking for Coplanarity
- Given four points: $P(1, 1, 1)$, $Q(2, 3, -1)$, $R(-1, 4, -3)$, $S(4, 5, -5)$
- To check if these points are coplanar, we can find the equation of the plane passing through any three points and check if the fourth point satisfies the equation
- Let’s consider points $P$, $Q$, and $R$
- Using method similar to Example 4, the equation of the plane passing through $P$, $Q$, and $R$ is $5x - 7y + 6z = -33$
- Substituting the coordinates of point $S$ in the equation, we get $5(4) - 7(5) + 6(-5) = -33$
- Therefore, these points are coplanar
Slide 15
- Example 8: Finding the Angle between a Line and a Plane
- Given a line with direction vector $\vec{L} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$ and a plane with normal vector $\vec{n} = \begin{bmatrix} 3 \ -1 \ -2 \end{bmatrix}$
- The angle $\theta$ between the line and the plane is given by the equation $\cos \theta = \frac{|\vec{n} \cdot \vec{L}|}{\lVert \vec{n} \rVert \lVert \vec{L} \rVert}$
- $\vec{n} \cdot \vec{L} = 3 \cdot 1 + (-1) \cdot 2 + (-2) \cdot (-1) = 7$
- $\lVert \vec{n} \rVert = \sqrt{3^2 + (-1)^2 + (-2)^2} = \sqrt{14}$
- $\lVert \vec{L} \rVert = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6}$
- Therefore, $\cos \theta = \frac{7}{\sqrt{14} \cdot \sqrt{6}}$
- $\theta = \arccos \left(\frac{7}{\sqrt{84}}\right)$
Slide 16
- Example 9: Finding the Distance between a Point and a Plane
- Given a point $P(3, 4, 1)$ and a plane with equation $2x - 3y + z = 7$
- The distance between the point and the plane is given by the equation $d = \frac{|\vec{P} \cdot \vec{n}|}{\lVert \vec{n} \rVert}$
- $\vec{n} = \begin{bmatrix} 2 \ -3 \ 1 \end{bmatrix}$
- $\vec{P} \cdot \vec{n} = 3 \cdot 2 + 4 \cdot (-3) + 1 \cdot 1 = -5$
- $\lVert \vec{n} \rVert = \sqrt{2^2 + (-3)^2 + 1^2} = \sqrt{14}$
- Therefore, the distance between the point and the plane is $\frac{5}{\sqrt{14}}$
Slide 17
- Example 10: Finding the Intersection of a Line and a Plane
- Given a line with equation $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and a plane with equation $x - 2y + 2z = 9$
- To find the intersection point, we can solve the system of equations formed by the line and the plane
- Substituting the values of $x$, $y$, and $z$ from the line equation into the plane equation, we get $\frac{2+2}{3} - 2\left(\frac{-1+1}{2}\right) + 2\left(\frac{3-3}{-1}\right) = 9$
- Simplifying the equation, we get $4 = 9$
- Since the equation is not true, there is no intersection point
Slide 18
- Example 11: Finding the Angle between Two Planes
- Given two planes with equations $2x + y - 3z = 4$ and $x + 2y + z = 1$
- The angle $\theta$ between the planes is given by the equation $\cos \theta = \frac{|\vec{n_1} \cdot \vec{n_2}|}{\lVert \vec{n_1} \rVert \lVert \vec{n_2} \rVert}$
- $\vec{n_1} = \begin{bmatrix} 2 \ -1 \ -3 \end{bmatrix}$
- $\vec{n_2} = \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}$
- $\vec{n_1} \cdot \vec{n_2} = 2 \cdot 1 + (-1) \cdot 2 + (-3) \cdot 1 = -1$
- $\lVert \vec{n_1} \rVert = \sqrt{2^2 + (-1)^2 + (-3)^2} = \sqrt{14}$
- $\lVert \vec{n_2} \rVert = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$
- Therefore, $\cos \theta = \frac{1}{\sqrt{84}}$
- $\theta = \arccos \left(\frac{1}{\sqrt{84}}\right)$
Slide 19
- Recap:
- The cross product of two vectors gives a vector perpendicular to both vectors.
- The area of a triangle formed by two vectors $\vec{A}$ and $\vec{B}$ can be found using the magnitude of their cross product: $\frac{1}{2} \lVert \vec{A} \times \vec{B} \rVert$.
- The angle between two vectors $\vec{A}$ and $\vec{B}$ can be found using $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{\lVert \vec{A} \rVert \lVert \vec{B} \rVert}$.
- The projection of a vector $\vec{A}$ onto another vector $\vec{B}$ can be found using $\text{proj}_{\vec{B}} \vec{A} = \frac{\vec{A} \cdot \vec{B}}{\lVert \vec{B} \rVert^2} \cdot \vec{B}$.
- The volume of a parallelepiped formed by three vectors $\vec{A}$, $\vec{B}$, and $\vec{C}$ can be found using $|\vec{A} \cdot (\vec{B} \times \vec{C})|$.
- The scalar triple product of three vectors $\vec{A}$, $\vec{B}$, and $\vec{C}$ is given by $[\vec{A}, \vec{B}, \vec{C}] = \vec{A} \cdot (\vec{B} \times \vec{C})$.
Keep following for more examples and practice problems!
Sure! Here are slides 21 to 30 in markdown format:
``
Slide 21
- Example 12: Finding the Direction Ratios of a Line
- Given the equation of a line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$
- The direction ratios of the line are the coefficients of $x$, $y$, and $z$ in the equation
- Therefore, the direction ratios are $3$, $2$, and $-1$
Slide 22
- Example 13: Finding the Angle between a Line and a Plane
- Given a line with direction ratios $3$, $1$, $-2$ and a plane with equation $x - 2y + 2z = 9$
- To find the angle $\theta$ between the line and the plane, we can use the formula $\cos \theta = \frac{|\vec{d} \cdot \vec{n}|}{\lVert \vec{d} \rVert \lVert \vec{n} \rVert}$
- $\vec{d} = \begin{bmatrix} 3 \ 1 \ -2 \end{bmatrix}$ (direction ratios of the line)
- $\vec{n} = \begin{bmatrix} 1 \ -2 \ 2 \end{bmatrix}$ (normal vector of the plane)
- $\vec{d} \cdot \vec{n} = 3 \cdot 1 + 1 \cdot (-2) + (-2) \cdot 2 = -5$
- $\lVert \vec{d} \rVert = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}$
- $\lVert \vec{n} \rVert = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{9}$
- Therefore, $\cos \theta = \frac{5}{\sqrt{126}}$
Slide 23
- Example 14: Finding the Shortest Distance between Two Skew Lines
- Given two lines with equations:
- Line 1: $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-3}{1}$
- Line 2: $\frac{x+2}{1} = \frac{y-1}{-3} = \frac{z+4}{2}$
- To find the shortest distance between the lines, we can use the formula $d = \frac{|\vec{P_1P_2} \cdot \vec{n}|}{\lVert \vec{n} \rVert}$
- $\vec{P_1P_2}$ is