Vectors - Direction cosines
Introduction to vectors
Components of a vector
Unit vector
Direction cosines
Definition of direction cosines
Finding direction cosines
Properties of direction cosines
Relation between direction cosines and components
Dot product of two vectors using direction cosines
Examples and solved problems
</section> <section style="font-size: 50px";> <h2 id="matrix-algebra">Matrix Algebra</h2> <ul> <li>Introduction to matrices</li> <li>Types of matrices</li> <li>Operations on matrices</li> <li>Determinants of matrices</li> <li>Properties of determinants</li> <li>Inverse of a matrix</li> <li>Finding the inverse of a matrix</li> <li>Applications of matrix algebra</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="three-dimensional-geometry">Three Dimensional Geometry</h2> <ul> <li>Introduction to three-dimensional space</li> <li>Cartesian coordinates system</li> <li>Distance formula</li> <li>Section formula</li> <li>Direction cosines and direction ratios</li> <li>Angle between two lines</li> <li>Angle between two planes</li> <li>Projections</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="differential-equations">Differential Equations</h2> <ul> <li>Introduction to differential equations</li> <li>Order and degree of differential equations</li> <li>Solution of a differential equation</li> <li>Linear differential equations</li> <li>Homogeneous and non-homogeneous equations</li> <li>Variable separable method</li> <li>Linear differential equations of higher order</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="applications-of-integrals">Applications of Integrals</h2> <ul> <li>Area under a curve</li> <li>Definite integrals</li> <li>Indefinite integrals</li> <li>Area bounded by two curves</li> <li>Volume of solids of revolution</li> <li>Mean value theorems</li> <li>Motion under gravity</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="probability">Probability</h2> <ul> <li>Introduction to probability</li> <li>Types of events</li> <li>Probability of an event</li> <li>Addition and multiplication rules of probability</li> <li>Conditional probability</li> <li>Bayes’ theorem</li> <li>Random variables and probability distributions</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="linear-programming">Linear Programming</h2> <ul> <li>Introduction to linear programming</li> <li>Formulating the linear programming problem</li> <li>Graphical method for solving linear programming problems</li> <li>Feasible region and optimal solution</li> <li>Simplex method</li> <li>Duality in linear programming</li> <li>Sensitivity analysis</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="calculus---derivatives-and-applications">Calculus - Derivatives and Applications</h2> <ul> <li>Basic concepts of calculus</li> <li>Differentiation rules</li> <li>Differentiation of polynomial functions</li> <li>Derivatives of trigonometric functions</li> <li>Derivatives of exponential and logarithmic functions</li> <li>Applications of derivatives in optimization problems</li> <li>Tangents and normals</li> <li>Rolle’s theorem and mean value theorem</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="calculus---integrals-and-applications">Calculus - Integrals and Applications</h2> <ul> <li>Fundamental theorem of calculus</li> <li>Integration rules</li> <li>Integration by substitution</li> <li>Integration by parts</li> <li>Definite integrals and area under curves</li> <li>Properties of definite integrals</li> <li>Techniques of integration</li> <li>Applications of integrals in finding areas and volumes</li> <li>Examples and solved problems</li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="complex-numbers">Complex Numbers</h2> <ul> <li>Introduction to complex numbers</li> <li>Properties of complex numbers</li> <li>Polar form of complex numbers</li> <li>De Moivre’s theorem</li> <li>Roots of complex numbers</li> <li>Argand diagram</li> <li>Complex conjugate</li> <li>Euler’s formula</li> <li>Examples and solved problems</li> </ul> </section>
Vectors - Direction cosines
Introduction to vectors
Components of a vector
Unit vector
Direction cosines
Definition of direction cosines
Finding direction cosines
Properties of direction cosines
Relation between direction cosines and components
Dot product of two vectors using direction cosines
Matrix Algebra
Introduction to matrices
Types of matrices
Operations on matrices
Determinants of matrices
Properties of determinants
Inverse of a matrix
Finding the inverse of a matrix
Applications of matrix algebra
Three Dimensional Geometry
Introduction to three-dimensional space
Cartesian coordinates system
Distance formula
Section formula
Direction cosines and direction ratios
Angle between two lines
Angle between two planes
Projections
Differential Equations
Introduction to differential equations
Order and degree of differential equations
Solution of a differential equation
Linear differential equations
Homogeneous and non-homogeneous equations
Variable separable method
Linear differential equations of higher order
Applications of Integrals
Area under a curve
Definite integrals
Indefinite integrals
Area bounded by two curves
Volume of solids of revolution
Mean value theorems
Motion under gravity
Probability
Introduction to probability
Types of events
Probability of an event
Addition and multiplication rules of probability
Conditional probability
Bayes’ theorem
Random variables and probability distributions
Linear Programming
Introduction to linear programming
Formulating the linear programming problem
Graphical method for solving linear programming problems
Feasible region and optimal solution
Simplex method
Duality in linear programming
Sensitivity analysis
Calculus - Derivatives and Applications
Basic concepts of calculus
Differentiation rules
Differentiation of polynomial functions
Derivatives of trigonometric functions
Derivatives of exponential and logarithmic functions
Applications of derivatives in optimization problems
Tangents and normals
Rolle’s theorem and mean value theorem
Calculus - Integrals and Applications
Fundamental theorem of calculus
Integration rules
Integration by substitution
Integration by parts
Definite integrals and area under curves
Properties of definite integrals
Techniques of integration
Applications of integrals in finding areas and volumes
Complex Numbers
Introduction to complex numbers
Properties of complex numbers
Polar form of complex numbers
De Moivre’s theorem
Roots of complex numbers
Argand diagram
Complex conjugate
Euler’s formula
Vectors - Direction cosines
Introduction to vectors:
A vector is a quantity that has both magnitude and direction.
It is represented by an arrow, where the length of the arrow represents the magnitude and the direction of the arrow represents the direction.
Components of a vector:
A vector can be broken down into its components along the coordinate axes.
For example, a vector A can be represented as A = (A
x
, A
y
, A
z
).
Unit vector:
A unit vector has a magnitude of 1 and is used to indicate the direction of a vector.
It is denoted by a caret symbol (^) on top of the vector symbol.
Direction cosines:
Direction cosines are the cosines of the angles that a vector makes with the positive directions of the coordinate axes.
They are denoted by l, m, and n.
The direction cosines of a vector A are given by l = A
x
/|A|, m = A
y
/|A|, and n = A
z
/|A|, where |A| represents the magnitude of vector A.
Definition of direction cosines:
The direction cosines of a vector are the cosines of the angles that the vector makes with the positive directions of the coordinate axes.
</section> <section style="font-size: 50px";> <h2 id="vectors---direction-cosines-continued">Vectors - Direction cosines (continued)</h2> <ul> <li>Finding direction cosines: <ul> <li>To find the direction cosines of a vector, divide the components of the vector by its magnitude.</li> <li>For example, if a vector A = (3, 4, 5), the direction cosines would be l = 3/√(3² + 4² + 5²), m = 4/√(3² + 4² + 5²), and n = 5/√(3² + 4² + 5²).</li> </ul> </li> <li>Properties of direction cosines: <ol> <li>The sum of the squares of the direction cosines is always equal to 1: l² + m² + n² = 1.</li> <li>The direction cosines of a vector perpendicular to the coordinate axes are equal to the direction cosines of the axes themselves.</li> <li>The direction cosines of a vector are always positive or negative, depending on the quadrant in which the vector lies.</li> </ol> </li> <li>Relation between direction cosines and components: <ul> <li>The components of a vector can be expressed in terms of its direction cosines as A = |A|(l, m, n).</li> </ul> </li> <li>Dot product of two vectors using direction cosines: <ul> <li>The dot product of two vectors A and B can be calculated using their direction cosines as A · B = |A||B|(l<sub>1</sub>l<sub>2</sub> + m<sub>1</sub>m<sub>2</sub> + n<sub>1</sub>n<sub>2</sub>), where l<sub>1</sub>, m<sub>1</sub>, n<sub>1</sub> and l<sub>2</sub>, m<sub>2</sub>, n<sub>2</sub> are the direction cosines of vectors A and B, respectively.</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="matrix-algebra-2">Matrix Algebra</h2> <ul> <li>Introduction to matrices: <ul> <li>A matrix is a rectangular array of numbers or symbols arranged in rows and columns.</li> <li>It is denoted by a capitalized letter, such as A, B, or C.</li> </ul> </li> <li>Types of matrices: <ul> <li>Square matrix: A matrix with an equal number of rows and columns.</li> <li>Row matrix: A matrix with only one row.</li> <li>Column matrix: A matrix with only one column.</li> <li>Zero matrix: A matrix in which all elements are zero.</li> <li>Identity matrix: A square matrix in which all diagonal elements are one and all other elements are zero.</li> </ul> </li> <li>Operations on matrices: <ul> <li>Addition: Add corresponding elements of two matrices of the same order.</li> <li>Subtraction: Subtract corresponding elements of two matrices of the same order.</li> <li>Scalar multiplication: Multiply each element of a matrix by a scalar.</li> <li>Matrix multiplication: Multiply two matrices to get a result matrix.</li> </ul> </li> <li>Determinants of matrices: <ul> <li>The determinant of a square matrix is a scalar value that can be calculated using certain rules.</li> <li>It is commonly denoted by |A| or det(A).</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="matrix-algebra-continued">Matrix Algebra (continued)</h2> <ul> <li>Properties of determinants: <ol> <li>If two rows or columns of a matrix are interchanged, the determinant changes its sign.</li> <li>If any row or column of a matrix is multiplied by a scalar, the determinant is also multiplied by that scalar.</li> <li>If two rows or columns of a matrix are identical, the determinant is zero.</li> <li>If any two rows or columns of a matrix are proportional, the determinant is zero.</li> <li>If a matrix has two identical rows or columns, its determinant is zero.</li> </ol> </li> <li>Inverse of a matrix: <ul> <li>The inverse of a square matrix A is denoted by A<sup>-1</sup> and is such that A·A<sup>-1</sup> = A<sup>-1</sup>·A = I, where I is the identity matrix.</li> </ul> </li> <li>Finding the inverse of a matrix: <ul> <li>The inverse of a matrix can be found using various methods, such as the adjoint method, row operations, or the Gauss-Jordan method.</li> </ul> </li> <li>Applications of matrix algebra: <ul> <li>Matrices have various applications in computer graphics, physics, economics, and more.</li> <li>They are used to solve systems of linear equations, represent transformations, and perform statistical analysis.</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="three-dimensional-geometry-2">Three Dimensional Geometry</h2> <ul> <li>Introduction to three-dimensional space: <ul> <li>Three-dimensional space consists of three mutually perpendicular coordinate axes: x, y, and z.</li> <li>It is used to represent the position of points, lines, and planes in space.</li> </ul> </li> <li>Cartesian coordinates system: <ul> <li>The Cartesian coordinate system is used to locate points in three-dimensional space.</li> <li>It consists of three coordinate axes (x, y, and z) and a reference point called the origin.</li> </ul> </li> <li>Distance formula: <ul> <li>The distance between two points (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) and (x<sub>2</sub>, y<sub>2</sub>, z<sub>2</sub>) in three-dimensional space can be calculated using the distance formula: d = √((x<sub>2</sub> - x<sub>1</sub>)² + (y<sub>2</sub> - y<sub>1</sub>)² + (z<sub>2</sub> - z<sub>1</sub>)²)</li> </ul> </li> <li>Section formula: <ul> <li>The section formula is used to find the coordinates of a point that divides a line segment in a given ratio.</li> <li>It can be extended to find the coordinates of a point that divides a line segment in three-dimensional space.</li> </ul> </li> <li>Direction cosines and direction ratios: <ul> <li>Direction cosines are the cosines of the angles that a line makes with the positive directions of the coordinate axes.</li> <li>Direction ratios are the ratios of the distances of a point on a line from the coordinate axes.</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="three-dimensional-geometry-continued">Three Dimensional Geometry (continued)</h2> <ul> <li>Angle between two lines: <ul> <li>The angle between two lines can be found using the direction cosines of the lines.</li> <li>If the direction cosines of two lines are l<sub>1</sub>, m<sub>1</sub>, n<sub>1</sub> and l<sub>2</sub>, m<sub>2</sub>, n<sub>2</sub>, then the angle between the lines is given by: cosθ = l<sub>1</sub>l<sub>2</sub> + m<sub>1</sub>m<sub>2</sub> + n<sub>1</sub>n<sub>2</sub></li> </ul> </li> <li>Angle between two planes: <ul> <li>The angle between two planes can be found using the direction cosines of the normal vectors to the planes.</li> <li>If the direction cosines of the normal vectors to two planes are l<sub>1</sub>, m<sub>1</sub>, n<sub>1</sub> and l<sub>2</sub>, m<sub>2</sub>, n<sub>2</sub>, then the angle between the planes is given by: cosθ = l<sub>1</sub>l<sub>2</sub> + m<sub>1</sub>m<sub>2</sub> + n<sub>1</sub>n<sub>2</sub></li> </ul> </li> <li>Projections: <ul> <li>The projection of a line segment on a coordinate plane can be found using the direction cosines of the line.</li> <li>Similarly, the projection of a plane onto a coordinate plane can be found using the direction cosines of the plane’s normal vector.</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="differential-equations-2">Differential Equations</h2> <ul> <li>Introduction to differential equations: <ul> <li>A differential equation is an equation that relates a function and its derivatives.</li> <li>It can involve one or more variables and their derivatives.</li> </ul> </li> <li>Order and degree of differential equations: <ul> <li>The order of a differential equation is the highest order of the derivatives involved.</li> <li>The degree of a differential equation is the power to which the highest order derivative is raised.</li> </ul> </li> <li>Solution of a differential equation: <ul> <li>The solution of a differential equation is a function that satisfies the equation.</li> <li>Depending on the type of differential equation, the solution may involve constants or parameters.</li> </ul> </li> <li>Linear differential equations: <ul> <li>A linear differential equation is a differential equation in which the dependent variable and its derivatives appear linearly, i.e., there are no powers or products of the dependent variable or its derivatives.</li> </ul> </li> <li>Homogeneous and non-homogeneous equations: <ul> <li>A homogeneous differential equation is a linear differential equation in which the right-hand side is zero.</li> <li>A non-homogeneous differential equation is a linear differential equation in which the right-hand side is not zero.</li> </ul> </li> <li>Variable separable method: <ul> <li>The variable separable method is a technique used to solve certain types of differential equations by separating the variables and then integrating both sides.</li> </ul> </li> </ul> </section>
</section> <section style="font-size: 50px";> <h2 id="differential-equations-continued">Differential Equations (continued)</h2> <ul> <li>Linear differential equations of higher order: <ul> <li>Linear differential equations of higher order are differential equations in which the highest order derivative appears linearly.</li> <li>They can be solved using techniques such as the method of undetermined coefficients or the method of variation of parameters.</li> </ul> </li> <li>Examples and solved problems: <ul> <li>Example 1: Find the solution of the differential equation dy/dx = 2x + 3.</li> <li>Example 2: Solve the differential equation d²y/dx² + 4dy/dx + 4y = 0.</li> <li>Solved problem 1: Find the solution of the differential equation dy/dx = 4x² + 2x + 1, given that y(0) = 2.</li> </ul> </li> </ul> </section> </div> </div> <script src="/reveal/dist/reveal.js"></script> <script src="/reveal/plugin/markdown/markdown.js"></script> <script src="/reveal/plugin/highlight/highlight.js"></script> <script src="/reveal/plugin/math/math.js"></script> <script src="/reveal/plugin/anything/plugin.js"></script> <script src="/reveal/plugin/notes/notes.js"></script> <script src="/reveal/plugin/chart/Chart.min.js"></script> <script src="/reveal/plugin/chart/plugin.js"></script> <script src="/reveal/plugin/menu/menu.js"></script> <script src="/reveal/plugin/highlight/highlight.js"></script> <script src="/reveal/plugin/audio-slideshow/plugin.js"></script> <script src="/reveal/plugin/audio-slideshow/recorder.js"></script> <script src="/reveal/plugin/audio-slideshow/RecordRTC.js"></script> <script src="/reveal/plugin/copycode/copycode.js"></script> <script src="/reveal/plugin/RevealEditor-master/revealeditor.js"></script> <script src="/reveal/plugin/jump/jump.js"></script> <script src="/reveal/plugin/zoom/zoom.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js"></script> <script> Reveal.initialize({ slideNumber: true, controls: true, controlsTutorial: true, progress: true, transition: 'fade', highlight: { escapeHTML: false }, customcontrols: { controls: [ { icon: '<i class="fa fa-pen-square"></i>', title: 'Toggle chalkboard (B)', action: 'RevealChalkboard.toggleChalkboard();' }, { icon: '<i class="fa fa-pen"></i>', title: 'Toggle notes canvas (C)', action: 'RevealChalkboard.toggleNotesCanvas();' } ] }, plugins: [RevealMath.KaTeX,RevealMarkdown, RevealHighlight, RevealNotes, RevealAnything, RevealMenu, RevealChalkboard, RevealChart, RevealAudioSlideshow, RevealAudioRecorder, CopyCode, RevealZoom], }); function transformCallouts() { var slides = document.querySelectorAll('.reveal .slides section'); slides.forEach(function (slide) { var data = document.getElementsByTagName("Success"); for (let i = 0; i < data.length; i++) { data[i].classList.add("callout"); data[i].classList.add("callout-success"); } var data = document.getElementsByTagName("Default"); for (let i = 0; i < data.length; i++) { data[i].classList.add("callout"); data[i].classList.add("callout-default"); } var data = document.getElementsByTagName("Warning"); for (let i = 0; i < data.length; i++) { data[i].classList.add("callout"); data[i].classList.add("callout-warning"); } var data = document.getElementsByTagName("Primary"); for (let i = 0; i < data.length; i++) { data[i].classList.add("callout"); data[i].classList.add("callout-primary"); } var data = document.getElementsByTagName("Danger"); for (let i = 0; i < data.length; i++) { data[i].classList.add("callout"); data[i].classList.add("callout-danger"); } }); }; function addrfit() { var slides = document.querySelectorAll('.reveal'); slides.forEach(function (slide) { var temp = document.getElementsByTagName("h2"); if (temp.length > 0) { for (let i = 0; i < temp.length; i++) { temp[i].classList.add("r-fit-text"); } } var temp3 = document.getElementsByTagName("h1"); if (temp3.length > 0) { for (let i = 0; i < temp3.length; i++) { temp3[i].classList.add("r-fit-text"); } } var temp6 = document.getElementsByClassName("text-container"); if (temp6.length > 0) { for (let i = 0; i < temp6.length; i++) { var charcount = 0; var ptags = temp6[i].getElementsByTagName("p"); try { for (let j = 0; j < ptags.length; j++) { temp = ptags[j].outerText.replaceAll(" ", ""); temp = temp.replaceAll("\n", ""); charcount += temp.length; } } catch (err) { console.log(err); } var font = 35; if (charcount > 50 && charcount < 100) { font = 35; } else if (charcount > 100 && charcount < 120) { font = 33; } else if (charcount > 120 && charcount < 150) { font = 33; } else if (charcount > 150 && charcount < 170) { font = 31; } else if (charcount > 170 && charcount < 200) { font = 30; } else if (charcount > 200 && charcount < 230) { font = 29; } else if (charcount > 230 && charcount < 250) { font = 28; } else if (charcount > 250 && charcount < 270) { font = 27; } else if (charcount > 270 && charcount < 300) { font = 25; } else if (charcount > 300 && charcount < 330) { font = 23; } else if (charcount > 330 && charcount < 360) { font = 24; } else if (charcount > 360 && charcount < 390) { font = 22; } else if (charcount > 390 && charcount < 420) { font = 21; } else if (charcount > 420) { font = 20; } temp6[i].style.fontSize = `${font}px`; } } }) } Reveal.addEventListener('ready', addrfit); Reveal.addEventListener('ready', transformCallouts); </script> <script> function adjustFontSize(element) { let fontSize = parseInt(window.getComputedStyle(element).fontSize); const parentWidth = element.parentNode.offsetWidth; while (element.scrollHeight > element.offsetHeight || element.scrollWidth > parentWidth) { fontSize -= 1; element.style.fontSize = fontSize + 'px'; } } function checkOverflow() { const elements = document.querySelectorAll('.left, .right'); elements.forEach(element => { adjustFontSize(element); }); } window.addEventListener('load', checkOverflow); window.addEventListener('resize', checkOverflow); </script> </body> </html>