Vectors - Algebra of Vectors
- Scalars vs Vectors
- Representation of Vectors
- Addition of Vectors
- Subtraction of Vectors
-
Multiplication of a Vector with a Scalar |
Scalars vs Vectors
- Scalars: magnitude only
- Vectors: magnitude and direction
-
Example: Distance vs Displacement |
Representation of Vectors
- Notation: $\vec{a}$
- Magnitude: $|\vec{a}|$
- Direction: Angle or Unit Vector
Example:
- Given vector: $\vec{a}=3\hat{i}+4\hat{j}$
- Magnitude: $|\vec{a}|=\sqrt{(3^2+4^2)}$
-
Direction: Angle = $\arctan\left(\frac{4}{3}\right)$ |
Addition of Vectors
- Commutative property: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
- Triangle Law: $\vec{a}+\vec{b}=\vec{c}$
- Parallelogram Law: $\vec{a}+\vec{b}=\vec{d}$
Example:
- $\vec{a}=3\hat{i}+4\hat{j}$ and $\vec{b}=2\hat{i}-2\hat{j}$
- Triangle Law: $\vec{a}+\vec{b}=3\hat{i}+4\hat{j}+2\hat{i}-2\hat{j}=(3+2)\hat{i}+(4-2)\hat{j}$
-
Parallelogram Law: $\vec{a}+\vec{b}=3\hat{i}+4\hat{j}+(-2\hat{i})+(-2\hat{j})$ |
Subtraction of Vectors
- $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$
Example:
- $\vec{a}=3\hat{i}+4\hat{j}$ and $\vec{b}=2\hat{i}-2\hat{j}$
-
$\vec{a}-\vec{b}=3\hat{i}+4\hat{j}-(2\hat{i}-2\hat{j})$ |
Multiplication of a Vector with a Scalar
- Scalar multiplication: $c\vec{a} = \vec{a}c$
Example:
- $\vec{a}=3\hat{i}+4\hat{j}$
-
$2\vec{a} = 2(3\hat{i}+4\hat{j})$ |
Dot Product of Vectors
- Geometric interpretation
- Formula: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$
Example:
- $\vec{a}=3\hat{i}$ and $\vec{b}=4\hat{j}$
-
$\vec{a} \cdot \vec{b} = (3\hat{i}) \cdot (4\hat{j})$ |
Cross Product of Vectors
- Geometric interpretation
- Formula: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$
Example:
- $\vec{a}=3\hat{i}$ and $\vec{b}=4\hat{j}$
-
$\vec{a} \times \vec{b} = (3\hat{i}) \times (4\hat{j})$ |
Scalar Triple Product
- Formula: $\vec{a} \cdot (\vec{b} \times \vec{c})$
- Geometrical interpretation
Example:
- $\vec{a}=3\hat{i}$, $\vec{b}=4\hat{j}$, $\vec{c}=5\hat{k}$
- $\vec{a} \cdot (\vec{b} \times \vec{c})$
Geometric Interpretation of Dot Product
- The dot product of two vectors is equal to the product of their magnitudes and the cosine of the angle between them.
- The dot product measures the extent to which two vectors are aligned or parallel to each other.
- If the dot product is positive, the vectors are pointing in the same general direction.
- If the dot product is negative, the vectors are pointing in the opposite general direction.
- If the dot product is zero, the vectors are orthogonal or perpendicular to each other.
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
- $\vec{a} \cdot \vec{b} = (3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})$
Properties of Dot Product
- Distributive property: $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
- Commutative property: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- Multiplicative property: $(c\vec{a}) \cdot \vec{b} = \vec{a} \cdot (c\vec{b}) = c(\vec{a} \cdot \vec{b})$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, and $\vec{c} = 5\hat{i}-3\hat{j}$
- $(\vec{a} + \vec{b}) \cdot \vec{c} = (3\hat{i}+4\hat{j}+2\hat{i}-2\hat{j}) \cdot (5\hat{i}-3\hat{j})$
Geometric Interpretation of Cross Product
- The cross product of two vectors is a vector that is perpendicular to both of the original vectors.
- The magnitude of the cross product is equal to the product of the magnitudes of the two vectors and the sine of the angle between them.
- The direction of the cross product follows the right-hand rule.
- The cross product can be used to find areas of parallelograms and volumes of parallelepipeds.
Example:
- $\vec{a} = 3\hat{i}$ and $\vec{b} = 4\hat{j}$
- $\vec{a} \times \vec{b} = (3\hat{i}) \times (4\hat{j})$
Properties of Cross Product
- Distributive property: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- Anticommutative property: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- Multiplicative property: $(c\vec{a}) \times \vec{b} = \vec{a} \times (c\vec{b}) = c(\vec{a} \times \vec{b})$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, and $\vec{c} = 5\hat{i}-3\hat{j}$
- $\vec{a} \times (\vec{b} + \vec{c}) = (3\hat{i}+4\hat{j}) \times (2\hat{i}-2\hat{j}+5\hat{i}-3\hat{j})$
Scalar Triple Product
- The scalar triple product of three vectors is a scalar quantity.
- It can be calculated by taking the dot product of one vector with the cross product of the other two vectors.
- It is used to find the volume of a parallelepiped formed by the three vectors.
Example:
- $\vec{a} = 3\hat{i}$, $\vec{b} = 4\hat{j}$, and $\vec{c} = 5\hat{k}$
- $\vec{a} \cdot (\vec{b} \times \vec{c})$
Properties of Scalar Triple Product
- Anticommutative property: $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
- Distributive property: $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{c} \times \vec{d}) + \vec{b} \cdot (\vec{c} \times \vec{d})$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, $\vec{c} = 5\hat{i}-3\hat{j}$, and $\vec{d} = -\hat{k}$
- $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d})$
Magnitude of a Vector
- The magnitude or length of a vector is a scalar value that represents the size of the vector.
- It can be calculated using the Pythagorean theorem for two-dimensional vectors or the distance formula for three-dimensional vectors.
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$
- $|\vec{a}| = \sqrt{3^2 + 4^2}$
Unit Vector
- A unit vector is a vector that has a magnitude of 1.
- It is often used to represent directions or orientations.
- It is denoted by placing a hat (^) above the vector symbol.
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$
- Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
Projection of a Vector
- The projection of a vector $\vec{a}$ onto a vector $\vec{b}$ is a vector that represents the component of $\vec{a}$ that is in the direction of $\vec{b}$.
- It can be calculated using the dot product and the magnitude of $\vec{b}$.
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
- Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$
Component of a Vector
- The component of a vector $\vec{a}$ along a vector $\vec{b}$ is a scalar that represents the magnitude of the projection of $\vec{a}$ onto $\vec{b}$.
- It can be calculated using the dot product and the magnitude of $\vec{b}$.
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
- Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
Magnitude of a Vector
- The magnitude or length of a vector is a scalar value that represents the size of the vector.
- It can be calculated using the Pythagorean theorem for two-dimensional vectors or the distance formula for three-dimensional vectors.
- Magnitude of a vector $\vec{a}$ in two dimensions: $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$
- Magnitude of a vector $\vec{a}$ in three dimensions: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$
- $|\vec{a}| = \sqrt{3^2 + 4^2}$
Unit Vector
- A unit vector is a vector that has a magnitude of 1.
- It is often used to represent directions or orientations.
- It is denoted by placing a hat (^) above the vector symbol.
- Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$
- Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{(3\hat{i}+4\hat{j})}{\sqrt{3^2 + 4^2}}$
Projection of a Vector
- The projection of a vector $\vec{a}$ onto a vector $\vec{b}$ is a vector that represents the component of $\vec{a}$ that is in the direction of $\vec{b}$.
- It can be calculated using the dot product and the magnitude of $\vec{b}$.
- Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
- Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{(3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})}{|2\hat{i}-2\hat{j}|^2}\right)(2\hat{i}-2\hat{j})$
Component of a Vector
- The component of a vector $\vec{a}$ along a vector $\vec{b}$ is a scalar that represents the magnitude of the projection of $\vec{a}$ onto $\vec{b}$.
- It can be calculated using the dot product and the magnitude of $\vec{b}$.
- Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
- Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{(3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})}{|2\hat{i}-2\hat{j}|}$
Vector Equations
- A vector equation is an equation in which vectors are involved.
- It represents geometric properties such as lines, planes or other higher dimensional objects.
- Example: $\vec{r} = \vec{a} + t\vec{b}$ represents a line in vector form, where $\vec{r}$ is a position vector, $\vec{a}$ is a known vector, $\vec{b}$ is a direction vector, and $t$ is a parameter representing the position on the line.
Scalar Triple Product
- The scalar triple product of three vectors is a scalar quantity.
- It can be calculated by taking the dot product of one vector with the cross product of the other two vectors.
- It is used to find the volume of a parallelepiped formed by the three vectors.
- Scalar triple product of $\vec{a}$, $\vec{b}$, and $\vec{c}$: $(\vec{a} \times \vec{b}) \cdot \vec{c}$
Example:
- $\vec{a} = 3\hat{i}$, $\vec{b} = 4\hat{j}$, and $\vec{c} = 5\hat{k}$
- $(\vec{a} \times \vec{b}) \cdot \vec{c} = ((3\hat{i}) \times (4\hat{j}})) \cdot (5\hat{k})$
Properties of Scalar Triple Product
- Anticommutative property: $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
- Distributive property: $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{c} \times \vec{d}) + \vec{b} \cdot (\vec{c} \times \vec{d})$
Example:
- $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, $\vec{c} = 5\hat{i}-3\hat{j}$, and $\