Vectors - Algebra of Vectors

  • Scalars vs Vectors
  • Representation of Vectors
  • Addition of Vectors
  • Subtraction of Vectors
  • Multiplication of a Vector with a Scalar

Scalars vs Vectors

  • Scalars: magnitude only
  • Vectors: magnitude and direction
  • Example: Distance vs Displacement

Representation of Vectors

  • Notation: $\vec{a}$
  • Magnitude: $|\vec{a}|$
  • Direction: Angle or Unit Vector Example:
  • Given vector: $\vec{a}=3\hat{i}+4\hat{j}$
  • Magnitude: $|\vec{a}|=\sqrt{(3^2+4^2)}$
  • Direction: Angle = $\arctan\left(\frac{4}{3}\right)$

Addition of Vectors

  • Commutative property: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
  • Triangle Law: $\vec{a}+\vec{b}=\vec{c}$
  • Parallelogram Law: $\vec{a}+\vec{b}=\vec{d}$ Example:
  • $\vec{a}=3\hat{i}+4\hat{j}$ and $\vec{b}=2\hat{i}-2\hat{j}$
  • Triangle Law: $\vec{a}+\vec{b}=3\hat{i}+4\hat{j}+2\hat{i}-2\hat{j}=(3+2)\hat{i}+(4-2)\hat{j}$
  • Parallelogram Law: $\vec{a}+\vec{b}=3\hat{i}+4\hat{j}+(-2\hat{i})+(-2\hat{j})$

Subtraction of Vectors

  • $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$ Example:
  • $\vec{a}=3\hat{i}+4\hat{j}$ and $\vec{b}=2\hat{i}-2\hat{j}$
  • $\vec{a}-\vec{b}=3\hat{i}+4\hat{j}-(2\hat{i}-2\hat{j})$

Multiplication of a Vector with a Scalar

  • Scalar multiplication: $c\vec{a} = \vec{a}c$ Example:
  • $\vec{a}=3\hat{i}+4\hat{j}$
  • $2\vec{a} = 2(3\hat{i}+4\hat{j})$

Dot Product of Vectors

  • Geometric interpretation
  • Formula: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ Example:
  • $\vec{a}=3\hat{i}$ and $\vec{b}=4\hat{j}$
  • $\vec{a} \cdot \vec{b} = (3\hat{i}) \cdot (4\hat{j})$

Cross Product of Vectors

  • Geometric interpretation
  • Formula: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$ Example:
  • $\vec{a}=3\hat{i}$ and $\vec{b}=4\hat{j}$
  • $\vec{a} \times \vec{b} = (3\hat{i}) \times (4\hat{j})$

Scalar Triple Product

  • Formula: $\vec{a} \cdot (\vec{b} \times \vec{c})$
  • Geometrical interpretation Example:
  • $\vec{a}=3\hat{i}$, $\vec{b}=4\hat{j}$, $\vec{c}=5\hat{k}$
  • $\vec{a} \cdot (\vec{b} \times \vec{c})$

Geometric Interpretation of Dot Product

  • The dot product of two vectors is equal to the product of their magnitudes and the cosine of the angle between them.
  • The dot product measures the extent to which two vectors are aligned or parallel to each other.
  • If the dot product is positive, the vectors are pointing in the same general direction.
  • If the dot product is negative, the vectors are pointing in the opposite general direction.
  • If the dot product is zero, the vectors are orthogonal or perpendicular to each other. Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
  • $\vec{a} \cdot \vec{b} = (3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})$

Properties of Dot Product

  • Distributive property: $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
  • Commutative property: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
  • Multiplicative property: $(c\vec{a}) \cdot \vec{b} = \vec{a} \cdot (c\vec{b}) = c(\vec{a} \cdot \vec{b})$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, and $\vec{c} = 5\hat{i}-3\hat{j}$
  • $(\vec{a} + \vec{b}) \cdot \vec{c} = (3\hat{i}+4\hat{j}+2\hat{i}-2\hat{j}) \cdot (5\hat{i}-3\hat{j})$

Geometric Interpretation of Cross Product

  • The cross product of two vectors is a vector that is perpendicular to both of the original vectors.
  • The magnitude of the cross product is equal to the product of the magnitudes of the two vectors and the sine of the angle between them.
  • The direction of the cross product follows the right-hand rule.
  • The cross product can be used to find areas of parallelograms and volumes of parallelepipeds. Example:
  • $\vec{a} = 3\hat{i}$ and $\vec{b} = 4\hat{j}$
  • $\vec{a} \times \vec{b} = (3\hat{i}) \times (4\hat{j})$

Properties of Cross Product

  • Distributive property: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
  • Anticommutative property: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
  • Multiplicative property: $(c\vec{a}) \times \vec{b} = \vec{a} \times (c\vec{b}) = c(\vec{a} \times \vec{b})$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, and $\vec{c} = 5\hat{i}-3\hat{j}$
  • $\vec{a} \times (\vec{b} + \vec{c}) = (3\hat{i}+4\hat{j}) \times (2\hat{i}-2\hat{j}+5\hat{i}-3\hat{j})$

Scalar Triple Product

  • The scalar triple product of three vectors is a scalar quantity.
  • It can be calculated by taking the dot product of one vector with the cross product of the other two vectors.
  • It is used to find the volume of a parallelepiped formed by the three vectors. Example:
  • $\vec{a} = 3\hat{i}$, $\vec{b} = 4\hat{j}$, and $\vec{c} = 5\hat{k}$
  • $\vec{a} \cdot (\vec{b} \times \vec{c})$

Properties of Scalar Triple Product

  • Anticommutative property: $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
  • Distributive property: $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{c} \times \vec{d}) + \vec{b} \cdot (\vec{c} \times \vec{d})$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, $\vec{c} = 5\hat{i}-3\hat{j}$, and $\vec{d} = -\hat{k}$
  • $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d})$

Magnitude of a Vector

  • The magnitude or length of a vector is a scalar value that represents the size of the vector.
  • It can be calculated using the Pythagorean theorem for two-dimensional vectors or the distance formula for three-dimensional vectors. Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$
  • $|\vec{a}| = \sqrt{3^2 + 4^2}$

Unit Vector

  • A unit vector is a vector that has a magnitude of 1.
  • It is often used to represent directions or orientations.
  • It is denoted by placing a hat (^) above the vector symbol. Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$
  • Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

Projection of a Vector

  • The projection of a vector $\vec{a}$ onto a vector $\vec{b}$ is a vector that represents the component of $\vec{a}$ that is in the direction of $\vec{b}$.
  • It can be calculated using the dot product and the magnitude of $\vec{b}$. Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
  • Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

Component of a Vector

  • The component of a vector $\vec{a}$ along a vector $\vec{b}$ is a scalar that represents the magnitude of the projection of $\vec{a}$ onto $\vec{b}$.
  • It can be calculated using the dot product and the magnitude of $\vec{b}$. Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
  • Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

Magnitude of a Vector

  • The magnitude or length of a vector is a scalar value that represents the size of the vector.
  • It can be calculated using the Pythagorean theorem for two-dimensional vectors or the distance formula for three-dimensional vectors.
  • Magnitude of a vector $\vec{a}$ in two dimensions: $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$
  • Magnitude of a vector $\vec{a}$ in three dimensions: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$
  • $|\vec{a}| = \sqrt{3^2 + 4^2}$

Unit Vector

  • A unit vector is a vector that has a magnitude of 1.
  • It is often used to represent directions or orientations.
  • It is denoted by placing a hat (^) above the vector symbol.
  • Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$
  • Unit vector in the direction of $\vec{a}$: $\hat{a} = \frac{(3\hat{i}+4\hat{j})}{\sqrt{3^2 + 4^2}}$

Projection of a Vector

  • The projection of a vector $\vec{a}$ onto a vector $\vec{b}$ is a vector that represents the component of $\vec{a}$ that is in the direction of $\vec{b}$.
  • It can be calculated using the dot product and the magnitude of $\vec{b}$.
  • Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
  • Projection of $\vec{a}$ onto $\vec{b}$: $\text{proj}_\vec{b}(\vec{a}) = \left(\frac{(3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})}{|2\hat{i}-2\hat{j}|^2}\right)(2\hat{i}-2\hat{j})$

Component of a Vector

  • The component of a vector $\vec{a}$ along a vector $\vec{b}$ is a scalar that represents the magnitude of the projection of $\vec{a}$ onto $\vec{b}$.
  • It can be calculated using the dot product and the magnitude of $\vec{b}$.
  • Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$ and $\vec{b} = 2\hat{i}-2\hat{j}$
  • Component of $\vec{a}$ along $\vec{b}$: $\text{comp}_\vec{b}(\vec{a}) = \frac{(3\hat{i}+4\hat{j}) \cdot (2\hat{i}-2\hat{j})}{|2\hat{i}-2\hat{j}|}$

Vector Equations

  • A vector equation is an equation in which vectors are involved.
  • It represents geometric properties such as lines, planes or other higher dimensional objects.
  • Example: $\vec{r} = \vec{a} + t\vec{b}$ represents a line in vector form, where $\vec{r}$ is a position vector, $\vec{a}$ is a known vector, $\vec{b}$ is a direction vector, and $t$ is a parameter representing the position on the line.

Scalar Triple Product

  • The scalar triple product of three vectors is a scalar quantity.
  • It can be calculated by taking the dot product of one vector with the cross product of the other two vectors.
  • It is used to find the volume of a parallelepiped formed by the three vectors.
  • Scalar triple product of $\vec{a}$, $\vec{b}$, and $\vec{c}$: $(\vec{a} \times \vec{b}) \cdot \vec{c}$ Example:
  • $\vec{a} = 3\hat{i}$, $\vec{b} = 4\hat{j}$, and $\vec{c} = 5\hat{k}$
  • $(\vec{a} \times \vec{b}) \cdot \vec{c} = ((3\hat{i}) \times (4\hat{j}})) \cdot (5\hat{k})$

Properties of Scalar Triple Product

  • Anticommutative property: $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
  • Distributive property: $(\vec{a} + \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{c} \times \vec{d}) + \vec{b} \cdot (\vec{c} \times \vec{d})$ Example:
  • $\vec{a} = 3\hat{i}+4\hat{j}$, $\vec{b} = 2\hat{i}-2\hat{j}$, $\vec{c} = 5\hat{i}-3\hat{j}$, and $\