logₐ(b) = c
, where a
is the base, b
is the argument, and c
is the exponent.a
, and we want to evaluate it with a base b
, we can use the formula:
logₐ(b) = logₓ(b) / logₓ(a)
, where x
can be any base.log₂(5)
. However, our calculator only has buttons for logarithms with base 10.log₂(5)
to a logarithm with base 10:
log₂(5) = log₁₀(5) / log₁₀(2)
log₄(7)
. However, our calculator only has buttons for logarithms with base e.log₄(7)
to a logarithm with base e:
log₄(7) = ln(7) / ln(4)
log₅(2)
. Our calculator does not have a specific button for logarithms with base 5.log₅(2) = log₃(2) / log₃(5)
log₉(8)
, but our calculator only supports logarithms with base 10.log₉(8)
as follows:
log₉(8) = log₁₀(8) / log₁₀(9)
logₖ(1)
, where k
is any positive number.logₖ(1) = log₁₀(1) / log₁₀(k) = 0 / log₁₀(k) = 0
log₇(49)
using the Change of Base Property: log₇(49) = log₁₀(49) / log₁₀(7)
log₁₀(49) / log₁₀(7) = 2 / log₁₀(7)
log₇(49) = 2 / log₁₀(7)
log₄(1/16)
using the Change of Base Property: log₄(1/16) = log₁₀(1/16) / log₁₀(4)
log₁₀(1/16) / log₁₀(4) = -2 / log₁₀(4)
log₄(1/16) = -2 / log₁₀(4)
log₇(1/49)
using the Change of Base Property: log₇(1/49) = log₁₀(1/49) / log₁₀(7)
log₁₀(1/49) / log₁₀(7) = -2 / log₁₀(7)
log₇(1/49) = -2 / log₁₀(7)
log₃(27)
by applying the Change of Base Property: log₃(27) = log₁₀(27) / log₁₀(3)
log₁₀(27) / log₁₀(3) = 3 / log₁₀(3)
log₃(27) = 3 / log₁₀(3)
log₅(0.2)
using the Change of Base Property: log₅(0.2) = log₁₀(0.2) / log₁₀(5)
log₁₀(0.2) / log₁₀(5) ≈ -0.69897 / 0.69897
log₅(0.2) ≈ -1
log₇(7³)
using the Change of Base Property: log₇(7³) = log₁₀(7³) / log₁₀(7)
log₁₀(7³) / log₁₀(7) = 3 / log₁₀(7)
log₇(7³) = 3 / log₁₀(7)
log₂(8)
using the Change of Base Property: log₂(8) = log₁₀(8) / log₁₀(2)
log₁₀(8) / log₁₀(2) = 3 / log₁₀(2)
log₂(8) = 3 / log₁₀(2)
log₂(0.125)
by applying the Change of Base Property: log₂(0.125) = log₁₀(0.125) / log₁₀(2)
log₁₀(0.125) / log₁₀(2) ≈ -0.90309 / 0.30103
log₂(0.125) ≈ -3
log₄(16)
using the Change of Base Property: log₄(16) = log₁₀(16) / log₁₀(4)
log₁₀(16) / log₁₀(4) = 2 / log₁₀(4)
log₄(16) = 2 / log₁₀(4)
log₁₀(1000)
using the Change of Base Property: log₁₀(1000) = log₅(1000) / log₅(10)
log₅(1000) / log₅(10) ≈ 3 / 0.69897
log₁₀(1000) ≈ 4.29003
I hope these slides are helpful for your lecture on the topic of the Change of Base Property in logarithms. Let me know if there’s anything else I can assist you with!
log₃(81)
using the Change of Base Property: log₃(81) = log₁₀(81) / log₁₀(3)
log₁₀(81) / log₁₀(3) = 4 / log₁₀(3)
log₃(81) = 4 / log₁₀(3)
log₅(25)
using the Change of Base Property: log₅(25) = log₁₀(25) / log₁₀(5)
log₁₀(25) / log₁₀(5) = 2 / log₁₀(5)
log₅(25) = 2 / log₁₀(5)
log₂(16)
using the Change of Base Property: log₂(16) = log₁₀(16) / log₁₀(2)
log₁₀(16) / log₁₀(2) = 4 / log₁₀(2)
log₂(16) = 4 / log₁₀(2)
log₃(243)
by applying the Change of Base Property: log₃(243) = log₁₀(243) / log₁₀(3)
log₁₀(243) / log₁₀(3) = 5 / log₁₀(3)
log₃(243) = 5 / log₁₀(3)
log₄(64)
using the Change of Base Property: log₄(64) = log₁₀(64) / log₁₀(4)
log₁₀(64) / log₁₀(4) = 3 / log₁₀(4)
log₄(64) = 3 / log₁₀(4)
log₉(81)
using the Change of Base Property: log₉(81) = log₁₀(81) / log₁₀(9)
log₁₀(81) / log₁₀(9) = 2 / log₁₀(9)
log₉(81) = 2 / log₁₀(9)
log₄(256)
by applying the Change of Base Property: log₄(256) = log₁₀(256) / log₁₀(4)
log₁₀(256) / log₁₀(4) = 4 / log₁₀(4)
log₄(256) = 4 / log₁₀(4)
log₂(32)
using the Change of Base Property: log₂(32) = log₁₀(32) / log₁₀(2)
log₁₀(32) / log₁₀(2) = 5 / log₁₀(2)
log₂(32) = 5 / log₁₀(2)
log₅(125)
using the Change of Base Property: log₅(125) = log₁₀(125) / log₁₀(5)
log₁₀(125) / log₁₀(5) = 3 / log₁₀(5)
log₅(125) = 3 / log₁₀(5)
log₄(1)
by applying the Change of Base Property: log₄(1) = log₁₀(1) / log₁₀(4)
log₁₀(1) / log₁₀(4) = 0 / log₁₀(4)
log₄(1) = 0 / log₁₀(4)