Inverse Trigonometric Functions - Sum of Inverses of Sine

  • Let’s consider an equation: sin(A) + sin(B) where A and B are angles.
  • We will now derive a formula for finding the sum of the inverses of sine.
  • The formula is given by: sin^(-1)(a) + sin^(-1)(b) = sin^(-1)(ab + sqrt(1-a^2) sqrt(1-b^2))
  • The formula can be used when a, b and the expression inside the inverse sine function are between -1 and 1. Example:
  • Find the value of sin^(-1)(3/5) + sin^(-1)(4/5).
  • Using the formula, we have:
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((3/5)(4/5) + sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(1-(9/25))(sqrt(1-(16/25))))
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(16/25-9/25))
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7/25))
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7)/5)
  • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((12+5sqrt(7))/25) Equation:
  • sin^(-1)(a) + sin^(-1)(b) = sin^(-1)(ab + sqrt(1-a^2) sqrt(1-b^2))

Inverse Trigonometric Functions - Product of Inverses of Sine

  • Now, let’s consider an equation: sin(A)sin(B) where A and B are angles. Example:
  • Find the value of sin^(-1)(3/5)sin^(-1)(4/5).
  • Using the formula, we have:
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)((3/5)(4/5) - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
  • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) Equation:
  • sin^(-1)(a)sin^(-1)(b) = sin^(-1)(ab - sqrt(1-a^2) sqrt(1-b^2))

Inverse Trigonometric Functions - Difference of Inverses of Sine

  • Lastly, let’s consider an equation: sin(A) - sin(B) where A and B are angles. Example:
  • Find the value of sin^(-1)(3/5) - sin^(-1)(4/5).
  • Using the formula, we have:
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)((3/5)(4/5) - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
  • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) Equation:
  • sin^(-1)(a) - sin^(-1)(b) = sin^(-1)(ab - sqrt(1-a^2) sqrt(1-b^2))

Inverse Trigonometric Functions - Sum of inverses of sine

  • Let’s consider an equation: sin(A) + sin(B) where A and B are angles.

  • We will now derive a formula for finding the sum of the inverses of sine.

  • The formula is given by: sin^(-1)(a) + sin^(-1)(b) = sin^(-1)(ab + sqrt(1-a^2) sqrt(1-b^2))

  • The formula can be used when a, b, and the expression inside the inverse sine function are between -1 and 1.

  • Example: Find the value of sin^(-1)(3/5) + sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)([3/5][4/5] + sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(16/25-9/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7)/5)
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((12+5sqrt(7))/25) Inverse Trigonometric Functions - Product of inverses of sine
  • Now, let’s consider an equation: sin(A)sin(B) where A and B are angles.

  • Example: Find the value of sin^(-1)(3/5)sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)([3/5][4/5] - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) Inverse Trigonometric Functions - Difference of inverses of sine
  • Lastly, let’s consider an equation: sin(A) - sin(B) where A and B are angles.

  • Example: Find the value of sin^(-1)(3/5) - sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)([3/5][4/5] - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) In summary, we have formulas for finding the sum, product, and difference of the inverses of sine. These formulas are useful when working with angles and trigonometric functions involving sine. Inverse Trigonometric Functions - Sum of inverses of sine
  • Let’s consider an equation: sin(A) + sin(B) where A and B are angles.

  • We will now derive a formula for finding the sum of the inverses of sine.

  • The formula is given by: sin^(-1)(a) + sin^(-1)(b) = sin^(-1)(ab + sqrt(1-a^2) sqrt(1-b^2))

  • The formula can be used when a, b, and the expression inside the inverse sine function are between -1 and 1.

  • Example: Find the value of sin^(-1)(3/5) + sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((3/5)(4/5) + sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(16/25-9/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7)/5)
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((12+5sqrt(7))/25) Inverse Trigonometric Functions - Product of inverses of sine
  • Now, let’s consider an equation: sin(A)sin(B) where A and B are angles.

  • Example: Find the value of sin^(-1)(3/5)sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)([3/5][4/5] - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) Inverse Trigonometric Functions - Difference of inverses of sine
  • Lastly, let’s consider an equation: sin(A) - sin(B) where A and B are angles.

  • Example: Find the value of sin^(-1)(3/5) - sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)([3/5][4/5] - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(16/25-9/25))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7/25))
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)(12/25 - sqrt(7)/5)
    • sin^(-1)(3/5) - sin^(-1)(4/5) = sin^(-1)((12-5sqrt(7))/25) In summary, we have formulas for finding the sum, product, and difference of the inverses of sine. These formulas are useful when working with angles and trigonometric functions involving sine.

Inverse Trigonometric Functions - Sum of inverses of sine

  • Let’s consider an equation: sin(A) + sin(B) where A and B are angles.

  • We will now derive a formula for finding the sum of the inverses of sine.

  • The formula is given by: sin^(-1)(a) + sin^(-1)(b) = sin^(-1)(ab + sqrt(1-a^2) sqrt(1-b^2))

  • The formula can be used when a, b, and the expression inside the inverse sine function are between -1 and 1.

  • Example: Find the value of sin^(-1)(3/5) + sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((3/5)(4/5) + sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(1-(9/25))(sqrt(1-(16/25))))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(16/25-9/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7/25))
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)(12/25 + sqrt(7)/5)
    • sin^(-1)(3/5) + sin^(-1)(4/5) = sin^(-1)((12+5sqrt(7))/25) Inverse Trigonometric Functions - Product of inverses of sine
  • Now, let’s consider an equation: sin(A)sin(B) where A and B are angles.

  • Example: Find the value of sin^(-1)(3/5)sin^(-1)(4/5).

    • Using the formula, we have:
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-1)([3/5][4/5] - sqrt(1-(3/5)^2)sqrt(1-(4/5)^2))
    • sin^(-1)(3/5)sin^(-1)(4/5) = sin^(-