-
Recap of Inverse Trigonometric Functions
- Definition: Inverse function of a trigonometric function
- Range of inverse trig functions
-
Domain and Range of Inverse Trigonometric Functions
- Domain: Range of corresponding trig functions
- Range: Restricted domains of inverse trig functions
-
Basic Properties of Inverse Trig Functions
- Identity Property: sin^(-1)(sin(x)) = x
- Identity Property: cos^(-1)(cos(x)) = x
- Identity Property: tan^(-1)(tan(x)) = x
-
Odd and Even Properties of Inverse Trig Functions
- Odd Property: sin^(-1)(-x) = -sin^(-1)(x)
- Even Property: cos^(-1)(-x) = cos^(-1)(x)
- Odd Property: tan^(-1)(-x) = -tan^(-1)(x)
-
Pythagorean Identities of Inverse Trig Functions
- Pythagorean Identity: sin^(-1)(x) = cos^(-1)(√(1 - x^2))
- Pythagorean Identity: cos^(-1)(x) = sin^(-1)(√(1 - x^2))
-
Examples: Identifying Domain and Range
- Example 1: Find the domain and range of sin^(-1)(x)
- Example 2: Find the domain and range of cos^(-1)(x)
-
Complementary Angles Property
- Complementary Angles Property: sin^(-1)(x) + cos^(-1)(x) = π/2
- Complementary Angles Property: tan^(-1)(x) + cot^(-1)(x) = π/2
-
Examples: Complementary Angles Property
- Example 1: Find the value of sin^(-1)(3/5) + cos^(-1)(4/5)
- Example 2: Find the value of tan^(-1)(2) + cot^(-1)(3)
-
Composition of Inverse Trig Functions
- Composition Property: sin(sin^(-1)(x)) = x
- Composition Property: cos(cos^(-1)(x)) = x
- Composition Property: tan(tan^(-1)(x)) = x
-
Examples: Composition Property
- Example 1: Prove that sin(sin^(-1)(x)) = x
- Example 2: Prove that tan(tan^(-1)(x)) = x