Inverse Trigonometric Functions
- Definition of inverse trigonometric functions
- Range and principal value branch
- Graphs of inverse trigonometric functions
- Trigonometric equations and inverse trigonometric functions
- Evaluating inverse trigonometric functions using special triangles
Inverse Trigonometric Functions - Definition
- Inverse trigonometric functions are functions that undo the trigonometric functions.
- They allow us to find the angle from a known trigonometric ratio.
- Denoted as sin⁻¹, cos⁻¹, tan⁻¹, cot⁻¹, sec⁻¹, csc⁻¹.
Inverse Trigonometric Functions - Range and Principal Value Branch
- Range of inverse trigonometric functions depends on the principal value branch.
- Principal value branch is the specific interval for which the inverse function is defined.
- For sine and cosine, the principal value branch is [-π/2, π/2].
- For tangent, the principal value branch is (-π/2, π/2).
- For cotangent, secant, and cosecant, the principal value branch is [0, π].
Inverse Trigonometric Functions - Graphs
- Graph of y = sin⁻¹(x):
- Domain: [-1, 1]
- Range: [-π/2, π/2]
- Symmetry: Odd function
- Increasing from left to right
- Graph of y = cos⁻¹(x):
- Domain: [-1, 1]
- Range: [0, π]
- Symmetry: Even function
- Decreasing from left to right
Inverse Trigonometric Functions - Trigonometric Equations
- Trigonometric equations can be solved using inverse trigonometric functions.
- For example:
- Apply the inverse trigonometric function to both sides of the equation.
- Solve for x using the properties of inverse trigonometric functions.
Inverse Trigonometric Functions - Evaluating using Special Triangles
- Special triangles can be used to evaluate inverse trigonometric functions.
- Common angles from special triangles: 0°, 30°, 45°, 60°, 90°.
- By knowing the ratios for these angles, we can evaluate inverse trigonometric functions.
- For example:
- sin⁻¹(1/2) = 30°
- tan⁻¹√3 = 60°
Inverse Trigonometric Functions - Examples
- Find the value of cos⁻¹(-1/2).
- Solve the equation sec(x) = 2 for x.
- Find the angle sin(x) = 1.
- Solve the equation csc(x) = -1/2 for x.
Inverse Trigonometric Functions - Solutions
- sec(x) = 2:
- cos(x) = 1/2
- x = π/3, 5π/3
- csc(x) = -1/2:
- sin(x) = -2
- No solution in the given principal branch
Inverse Trigonometric Functions - IDENTITY
- Sum of two inverses of tangent:
- tan⁻¹(x) + tan⁻¹(1/x) = π/2, x > 0
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(1/x).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + 1/x) / (1 - (x/x)(1/x))
- tan(α + β) = (x + 1/x) / (1 - 1)
- tan(α + β) = (x + 1/x) / 0
- So (α + β) = π/2
- Hence, tan⁻¹(x) + tan⁻¹(1/x) = π/2
Inverse Trigonometric Functions - IDENTITY
- Difference of two inverse trigonometric functions:
- tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- So α - β = tan⁻¹((x - y)/(1 + xy))
- Hence, tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
Inverse Trigonometric Functions - IDENTITY
- Product of two inverse trigonometric functions:
- tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + y) / (1 - xy)
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- tan(α + β) * tan(α - β) = ((x + y) / (1 - xy)) * ((x - y) / (1 + xy))
- tan(α + β) * tan(α - β) = (xy - 1) / (x + y)
- So tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
Inverse Trigonometric Functions - IDENTITY
- Sum of inverse trigonometric functions:
- tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + y) / (1 - xy)
- So tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
Inverse Trigonometric Functions - IDENTITY
- Division of inverse trigonometric functions:
- tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- So tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
Inverse Trigonometric Functions - IDENTITY
- Sum of inverse trigonometric functions:
- sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
- Proof:
- Let α = sin⁻¹(x), β = sin⁻¹(y).
- sin(α + β) = sin α cos β + cos α sin β
- sin(α + β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) + (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
- sin(α + β) = (x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²)
- So sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
Inverse Trigonometric Functions - IDENTITY
- Difference of inverse trigonometric functions:
- sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))
- Proof:
- Let α = sin⁻¹(x), β = sin⁻¹(y).
- sin(α - β) = sin α cos β - cos α sin β
- sin(α - β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) - (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
- sin(α - β) = (x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²)
- So sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))
Inverse Trigonometric Functions - IDENTITY - Sum of two inverses of tangent
- Sum of two inverses of tangent:
- tan⁻¹(x) + tan⁻¹(1/x) = π/2, x > 0
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(1/x).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + 1/x) / (1 - (x/x)(1/x))
- tan(α + β) = (x + 1/x) / (1 - 1)
- tan(α + β) = (x + 1/x) / 0
- So (α + β) = π/2
- Hence, tan⁻¹(x) + tan⁻¹(1/x) = π/2
Inverse Trigonometric Functions - IDENTITY - Difference of two inverse trigonometric functions
- Difference of two inverse trigonometric functions:
- tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- So α - β = tan⁻¹((x - y)/(1 + xy))
- Hence, tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
Inverse Trigonometric Functions - IDENTITY - Product of two inverse trigonometric functions
- Product of two inverse trigonometric functions:
- tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + y) / (1 - xy)
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- tan(α + β) * tan(α - β) = ((x + y) / (1 - xy)) * ((x - y) / (1 + xy))
- tan(α + β) * tan(α - β) = (xy - 1) / (x + y)
- So tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
Inverse Trigonometric Functions - IDENTITY - Sum of inverse trigonometric functions
- Sum of inverse trigonometric functions:
- tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
- tan(α + β) = (x + y) / (1 - xy)
- So tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
Inverse Trigonometric Functions - IDENTITY - Division of inverse trigonometric functions
- Division of inverse trigonometric functions:
- tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
- Proof:
- Let α = tan⁻¹(x), β = tan⁻¹(y).
- tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
- tan(α - β) = (x - y) / (1 + xy)
- So tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
Inverse Trigonometric Functions - IDENTITY - Sum of inverse trigonometric functions
- Sum of inverse trigonometric functions:
- sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
- Proof:
- Let α = sin⁻¹(x), β = sin⁻¹(y).
- sin(α + β) = sin α cos β + cos α sin β
- sin(α + β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) + (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
- sin(α + β) = (x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²)
- So sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
Inverse Trigonometric Functions - IDENTITY - Difference of inverse trigonometric functions
- Difference of inverse trigonometric functions:
- sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))
- Proof:
- Let α = sin⁻¹(x), β = sin⁻¹(y).
- sin(α - β) = sin α cos β - cos α sin β
- sin(α - β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) - (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
- sin(α - β) = (x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²)
- So sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))