Inverse Trigonometric Functions

  • Definition of inverse trigonometric functions
  • Range and principal value branch
  • Graphs of inverse trigonometric functions
  • Trigonometric equations and inverse trigonometric functions
  • Evaluating inverse trigonometric functions using special triangles

Inverse Trigonometric Functions - Definition

  • Inverse trigonometric functions are functions that undo the trigonometric functions.
  • They allow us to find the angle from a known trigonometric ratio.
  • Denoted as sin⁻¹, cos⁻¹, tan⁻¹, cot⁻¹, sec⁻¹, csc⁻¹.

Inverse Trigonometric Functions - Range and Principal Value Branch

  • Range of inverse trigonometric functions depends on the principal value branch.
  • Principal value branch is the specific interval for which the inverse function is defined.
  • For sine and cosine, the principal value branch is [-π/2, π/2].
  • For tangent, the principal value branch is (-π/2, π/2).
  • For cotangent, secant, and cosecant, the principal value branch is [0, π].

Inverse Trigonometric Functions - Graphs

  • Graph of y = sin⁻¹(x):
    • Domain: [-1, 1]
    • Range: [-π/2, π/2]
    • Symmetry: Odd function
    • Increasing from left to right
  • Graph of y = cos⁻¹(x):
    • Domain: [-1, 1]
    • Range: [0, π]
    • Symmetry: Even function
    • Decreasing from left to right

Inverse Trigonometric Functions - Trigonometric Equations

  • Trigonometric equations can be solved using inverse trigonometric functions.
  • For example:
    • sin(x) = 1/2
    • cos(x) = 0
  • Apply the inverse trigonometric function to both sides of the equation.
  • Solve for x using the properties of inverse trigonometric functions.

Inverse Trigonometric Functions - Evaluating using Special Triangles

  • Special triangles can be used to evaluate inverse trigonometric functions.
  • Common angles from special triangles: 0°, 30°, 45°, 60°, 90°.
  • By knowing the ratios for these angles, we can evaluate inverse trigonometric functions.
  • For example:
    • sin⁻¹(1/2) = 30°
    • tan⁻¹√3 = 60°

Inverse Trigonometric Functions - Examples

  1. Find the value of cos⁻¹(-1/2).
  1. Solve the equation sec(x) = 2 for x.
  1. Evaluate tan⁻¹(√3).
  1. Find the angle sin(x) = 1.
  1. Solve the equation csc(x) = -1/2 for x.

Inverse Trigonometric Functions - Solutions

  1. cos⁻¹(-1/2): π/3
  1. sec(x) = 2:
    • cos(x) = 1/2
    • x = π/3, 5π/3
  1. tan⁻¹(√3): π/3
  1. sin(x) = 1: π/2
  1. csc(x) = -1/2:
    • sin(x) = -2
    • No solution in the given principal branch

Inverse Trigonometric Functions - IDENTITY

  • Sum of two inverses of tangent:
    • tan⁻¹(x) + tan⁻¹(1/x) = π/2, x > 0
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(1/x).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + 1/x) / (1 - (x/x)(1/x))
    • tan(α + β) = (x + 1/x) / (1 - 1)
    • tan(α + β) = (x + 1/x) / 0
    • So (α + β) = π/2
    • Hence, tan⁻¹(x) + tan⁻¹(1/x) = π/2

Inverse Trigonometric Functions - IDENTITY

  • Difference of two inverse trigonometric functions:
    • tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • So α - β = tan⁻¹((x - y)/(1 + xy))
    • Hence, tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))

Inverse Trigonometric Functions - IDENTITY

  • Product of two inverse trigonometric functions:
    • tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + y) / (1 - xy)
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • tan(α + β) * tan(α - β) = ((x + y) / (1 - xy)) * ((x - y) / (1 + xy))
    • tan(α + β) * tan(α - β) = (xy - 1) / (x + y)
    • So tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))

Inverse Trigonometric Functions - IDENTITY

  • Sum of inverse trigonometric functions:
    • tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + y) / (1 - xy)
    • So tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))

Inverse Trigonometric Functions - IDENTITY

  • Division of inverse trigonometric functions:
    • tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • So tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)

Inverse Trigonometric Functions - IDENTITY

  • Sum of inverse trigonometric functions:
    • sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
  • Proof:
    • Let α = sin⁻¹(x), β = sin⁻¹(y).
    • sin(α + β) = sin α cos β + cos α sin β
    • sin(α + β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) + (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
    • sin(α + β) = (x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²)
    • So sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))

Inverse Trigonometric Functions - IDENTITY

  • Difference of inverse trigonometric functions:
    • sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))
  • Proof:
    • Let α = sin⁻¹(x), β = sin⁻¹(y).
    • sin(α - β) = sin α cos β - cos α sin β
    • sin(α - β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) - (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
    • sin(α - β) = (x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²)
    • So sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))

Inverse Trigonometric Functions - IDENTITY - Sum of two inverses of tangent

  • Sum of two inverses of tangent:
    • tan⁻¹(x) + tan⁻¹(1/x) = π/2, x > 0
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(1/x).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + 1/x) / (1 - (x/x)(1/x))
    • tan(α + β) = (x + 1/x) / (1 - 1)
    • tan(α + β) = (x + 1/x) / 0
    • So (α + β) = π/2
    • Hence, tan⁻¹(x) + tan⁻¹(1/x) = π/2

Inverse Trigonometric Functions - IDENTITY - Difference of two inverse trigonometric functions

  • Difference of two inverse trigonometric functions:
    • tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • So α - β = tan⁻¹((x - y)/(1 + xy))
    • Hence, tan⁻¹(x) - tan⁻¹(y) = tan⁻¹((x - y)/(1 + xy))

Inverse Trigonometric Functions - IDENTITY - Product of two inverse trigonometric functions

  • Product of two inverse trigonometric functions:
    • tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + y) / (1 - xy)
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • tan(α + β) * tan(α - β) = ((x + y) / (1 - xy)) * ((x - y) / (1 + xy))
    • tan(α + β) * tan(α - β) = (xy - 1) / (x + y)
    • So tan⁻¹(x) * tan⁻¹(y) = tan⁻¹((xy - 1)/(x + y))

Inverse Trigonometric Functions - IDENTITY - Sum of inverse trigonometric functions

  • Sum of inverse trigonometric functions:
    • tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α + β) = (tan α + tan β) / (1 - tan α tan β)
    • tan(α + β) = (x + y) / (1 - xy)
    • So tan⁻¹(x) + tan⁻¹(y) = tan⁻¹((x + y)/(1 - xy))

Inverse Trigonometric Functions - IDENTITY - Division of inverse trigonometric functions

  • Division of inverse trigonometric functions:
    • tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)
  • Proof:
    • Let α = tan⁻¹(x), β = tan⁻¹(y).
    • tan(α - β) = (tan α - tan β) / (1 + tan α tan β)
    • tan(α - β) = (x - y) / (1 + xy)
    • So tan⁻¹(x) / tan⁻¹(y) = (xy - 1) / (x - y)

Inverse Trigonometric Functions - IDENTITY - Sum of inverse trigonometric functions

  • Sum of inverse trigonometric functions:
    • sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))
  • Proof:
    • Let α = sin⁻¹(x), β = sin⁻¹(y).
    • sin(α + β) = sin α cos β + cos α sin β
    • sin(α + β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) + (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
    • sin(α + β) = (x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²)
    • So sin⁻¹(x) + sin⁻¹(y) = sin⁻¹((x√(1 - y²) + y√(1 - x²))/√(1 - x²)(1 - y²))

Inverse Trigonometric Functions - IDENTITY - Difference of inverse trigonometric functions

  • Difference of inverse trigonometric functions:
    • sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))
  • Proof:
    • Let α = sin⁻¹(x), β = sin⁻¹(y).
    • sin(α - β) = sin α cos β - cos α sin β
    • sin(α - β) = (x/sqrt(1 - x²)) * (sqrt(1 - y²)/sqrt(1 - y²)) - (y/sqrt(1 - y²)) * (sqrt(1 - x²)/sqrt(1 - x²))
    • sin(α - β) = (x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²)
    • So sin⁻¹(x) - sin⁻¹(y) = sin⁻¹((x√(1 - y²) - y√(1 - x²))/√(1 - x²)(1 - y²))