Inverse Trigonometric Functions - Examples on ITF
Example 1: Find the value of arcsin ( 1 2 ) \arcsin\left(\frac{1}{2}\right) arcsin ( 2 1 )
Example 2: Solve for x: sin − 1 ( x ) = π 4 \sin^{-1}(x) = \frac{\pi}{4} sin − 1 ( x ) = 4 π
Example 3: Calculate the value of arccos ( 3 2 ) \arccos\left(\frac{\sqrt{3}}{2}\right) arccos ( 2 3 )
Example 4: Solve for x: cos − 1 ( x ) = − π 3 \cos^{-1}(x) = -\frac{\pi}{3} cos − 1 ( x ) = − 3 π
Example 5: Find the value of arctan ( 3 ) \arctan\left(\sqrt{3}\right) arctan ( 3 )
Example 6: Solve for x: tan − 1 ( x ) = π 6 \tan^{-1}(x) = \frac{\pi}{6} tan − 1 ( x ) = 6 π
Example 7: Calculate the value of $\arccsc\left(-1\right)$
Example 8: Solve for x: csc − 1 ( x ) = − π 2 \csc^{-1}(x) = -\frac{\pi}{2} csc − 1 ( x ) = − 2 π
Example 9: Find the value of $\arcsec\left(-2\right)$
Example 10: Solve for x: sec − 1 ( x ) = 2 π 3 \sec^{-1}(x) = \frac{2\pi}{3} sec − 1 ( x ) = 3 2 π
Slide 11
Example 11: Find the value of arcsin ( − 1 2 ) \arcsin\left(-\frac{1}{2}\right) arcsin ( − 2 1 )
Solution: Since sin ( π 6 ) = 1 2 \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} sin ( 6 π ) = 2 1 , we have arcsin ( − 1 2 ) = − π 6 \arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6} arcsin ( − 2 1 ) = − 6 π
Example 12: Solve for x: sin − 1 ( x ) = − π 6 \sin^{-1}(x) = -\frac{\pi}{6} sin − 1 ( x ) = − 6 π
Solution: Using the definition of inverse sine function, we get x = sin ( − π 6 ) = − 1 2 x = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} x = sin ( − 6 π ) = − 2 1
Example 13: Calculate the value of arccos ( − 3 2 ) \arccos\left(-\frac{\sqrt{3}}{2}\right) arccos ( − 2 3 )
Solution: Since cos ( π 6 ) = 3 2 \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} cos ( 6 π ) = 2 3 , we have arccos ( − 3 2 ) = 5 π 6 \arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6} arccos ( − 2 3 ) = 6 5 π
Example 14: Solve for x: cos − 1 ( x ) = π 4 \cos^{-1}(x) = \frac{\pi}{4} cos − 1 ( x ) = 4 π
Solution: Using the definition of inverse cosine function, we get x = cos ( π 4 ) = 2 2 x = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} x = cos ( 4 π ) = 2 2
Example 15: Find the value of arctan ( − 3 ) \arctan\left(-\sqrt{3}\right) arctan ( − 3 )
Solution: Since tan ( − π 3 ) = − 3 \tan\left(-\frac{\pi}{3}\right) = -\sqrt{3} tan ( − 3 π ) = − 3 , we have arctan ( − 3 ) = − π 3 \arctan\left(-\sqrt{3}\right) = -\frac{\pi}{3} arctan ( − 3 ) = − 3 π
Inverse Trigonometric Functions - Examples on ITF (Continued)
Example 16: Solve for x: tan − 1 ( x ) = − π 4 \tan^{-1}(x) = -\frac{\pi}{4} tan − 1 ( x ) = − 4 π
Solution: Using the definition of inverse tangent function, we get x = tan ( − π 4 ) = − 1 x = \tan\left(-\frac{\pi}{4}\right) = -1 x = tan ( − 4 π ) = − 1
Example 17: Calculate the value of $\arccsc\left(1\right)$
Solution: Since csc ( π 2 ) = 1 \csc\left(\frac{\pi}{2}\right) = 1 csc ( 2 π ) = 1 , we have $\arccsc\left(1\right) = \frac{\pi}{2}$
Example 18: Solve for x: csc − 1 ( x ) = π 6 \csc^{-1}(x) = \frac{\pi}{6} csc − 1 ( x ) = 6 π
Solution: Using the definition of inverse cosecant function, we get x = csc ( π 6 ) = 2 x = \csc\left(\frac{\pi}{6}\right) = 2 x = csc ( 6 π ) = 2
Example 19: Find the value of $\arcsec\left(2\right)$
Solution: Since sec ( π 3 ) = 2 \sec\left(\frac{\pi}{3}\right) = 2 sec ( 3 π ) = 2 , we have $\arcsec\left(2\right) = \frac{\pi}{3}$
Example 20: Solve for x: sec − 1 ( x ) = π 4 \sec^{-1}(x) = \frac{\pi}{4} sec − 1 ( x ) = 4 π
Solution: Using the definition of inverse secant function, we get x = sec ( π 4 ) = 2 x = \sec\left(\frac{\pi}{4}\right) = \sqrt{2} x = sec ( 4 π ) = 2
Slide 26
Example 21: Find the value of arcsin ( 2 2 ) \arcsin\left(\frac{\sqrt{2}}{2}\right) arcsin ( 2 2 )
Solution: Since sin ( π 4 ) = 2 2 \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} sin ( 4 π ) = 2 2 , we have arcsin ( 2 2 ) = π 4 \arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} arcsin ( 2 2 ) = 4 π
Example 22: Solve for x: sin − 1 ( x ) = π 3 \sin^{-1}(x) = \frac{\pi}{3} sin − 1 ( x ) = 3 π
Solution: Using the definition of inverse sine function, we get x = sin ( π 3 ) = 3 2 x = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} x = sin ( 3 π ) = 2 3
Example 23: Calculate the value of arccos ( 1 2 ) \arccos\left(\frac{1}{2}\right) arccos ( 2 1 )
Solution: Since cos ( π 3 ) = 1 2 \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} cos ( 3 π ) = 2 1 , we have arccos ( 1 2 ) = π 3 \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3} arccos ( 2 1 ) = 3 π
Example 24: Solve for x: cos − 1 ( x ) = π 6 \cos^{-1}(x) = \frac{\pi}{6} cos − 1 ( x ) = 6 π
Solution: Using the definition of inverse cosine function, we get x = cos ( π 6 ) = 3 2 x = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} x = cos ( 6 π ) = 2 3
Example 25: Find the value of arctan ( 1 ) \arctan\left(1\right) arctan ( 1 )
Solution: Since tan ( π 4 ) = 1 \tan\left(\frac{\pi}{4}\right) = 1 tan ( 4 π ) = 1 , we have arctan ( 1 ) = π 4 \arctan\left(1\right) = \frac{\pi}{4} arctan ( 1 ) = 4 π
Slide 31
Example 26: Solve for x: tan − 1 ( x ) = π \tan^{-1}(x) = \pi tan − 1 ( x ) = π
Solution: Using the definition of inverse tangent function, we get x = tan ( π ) = 0 x = \tan(\pi) = 0 x = tan ( π ) = 0
Example 27: Calculate the value of $\arccsc\left(\sqrt{2}\right)$
Solution: Since csc ( π 4 ) = 2 \csc\left(\frac{\pi}{4}\right) = \sqrt{2} csc ( 4 π ) = 2 , we have $\arccsc\left(\sqrt{2}\right) = \frac{\pi}{4}$
Example 28: Solve for x: csc − 1 ( x ) = 2 π 3 \csc^{-1}(x) = \frac{2\pi}{3} csc − 1 ( x ) = 3 2 π
Solution: Using the definition of inverse cosecant function, we get x = csc ( 2 π 3 ) = − 2 3 3 x = \csc\left(\frac{2\pi}{3}\right) = -\frac{2\sqrt{3}}{3} x = csc ( 3 2 π ) = − 3 2 3
Example 29: Find the value of $\arcsec\left(-1\right)$
Solution: Since sec ( π ) = − 1 \sec\left(\pi\right) = -1 sec ( π ) = − 1 , we have $\arcsec\left(-1\right) = \pi$
Example 30: Solve for x: sec − 1 ( x ) = − π 2 \sec^{-1}(x) = -\frac{\pi}{2} sec − 1 ( x ) = − 2 π
Solution: Using the definition of inverse secant function, we get x = sec ( − π 2 ) = undefined x = \sec\left(-\frac{\pi}{2}\right) = \text{undefined} x = sec ( − 2 π ) = undefined
Resume presentation
Inverse Trigonometric Functions - Examples on ITF Example 1: Find the value of $\arcsin\left(\frac{1}{2}\right)$ Example 2: Solve for x: $\sin^{-1}(x) = \frac{\pi}{4}$ Example 3: Calculate the value of $\arccos\left(\frac{\sqrt{3}}{2}\right)$ Example 4: Solve for x: $\cos^{-1}(x) = -\frac{\pi}{3}$ Example 5: Find the value of $\arctan\left(\sqrt{3}\right)$ Example 6: Solve for x: $\tan^{-1}(x) = \frac{\pi}{6}$ Example 7: Calculate the value of $\arccsc\left(-1\right)$ Example 8: Solve for x: $\csc^{-1}(x) = -\frac{\pi}{2}$ Example 9: Find the value of $\arcsec\left(-2\right)$ Example 10: Solve for x: $\sec^{-1}(x) = \frac{2\pi}{3}$