Integral Calculus - Problem on integral of derivative form

  • In this lecture, we will discuss problems on integrating the derivative form.

Problem 1

Consider the function f(x) = x^3 + 3x^2 + 2x + 1. Find F(x), where F(x) is the antiderivative of f(x).

  • Solution:

    • We can find the antiderivative of f(x) by using the power rule for integration:

      • ∫(x^n) dx = (1/(n+1)) * x^(n+1)
    • Applying the power rule, we get:

      • F(x) = (1/4) * x^4 + (1) * x^3 + (1/2) * x^2 + (1) * x + C
  • Therefore, the antiderivative of f(x) is F(x) = (1/4) * x^4 + x^3 + (1/2) * x^2 + x + C.

Problem 2

Evaluate ∫(4x^3 + 2x^2 - 5x + 3) dx.

  • Solution:

    • To find the integral of a polynomial function, we apply the power rule for integration to each term and sum the results.

    • Applying the power rule, we get:

      • ∫(4x^3) dx = (4/4) * x^4 = x^4

      • ∫(2x^2) dx = (2/3) * x^3

      • ∫(-5x) dx = (-5/2) * x^2

      • ∫(3) dx = 3x

    • Adding the results, we get:

      • ∫(4x^3 + 2x^2 - 5x + 3) dx = x^4 + (2/3) * x^3 - (5/2) * x^2 + 3x + C
  • Therefore, the value of the integral is x^4 + (2/3) * x^3 - (5/2) * x^2 + 3x + C.

Problem 3

Find the value of ∫(2cos(2x)) dx.

  • Solution:

    • To integrate a cosine function, we use the power rule for integration.

    • Applying the power rule, we get:

      • ∫(cos(x)) dx = sin(x)
    • However, in this case, we have ∫(2cos(2x)) dx, so we need to apply a substitution.

    • Let u = 2x. Then, du = 2 dx.

    • Substituting the values, we get:

      • ∫(cos(2x)) dx = (1/2) * ∫(cos(u)) du = (1/2) * sin(u) = (1/2) * sin(2x)
  • Therefore, the value of the integral is (1/2) * sin(2x) + C.

Problem 4

Evaluate ∫(e^(3x)) dx.

  • Solution:

    • To integrate the exponential function e^(kx), we apply the natural logarithm property of integrals.

    • Applying the property, we get:

      • ∫(e^(kx)) dx = (1/k) * e^(kx)
    • In this case, k = 3, so we have:

      • ∫(e^(3x)) dx = (1/3) * e^(3x)
  • Therefore, the value of the integral is (1/3) * e^(3x) + C.

Problem 5

Find ∫(x * ln(x)) dx.

  • Solution:

    • To integrate a product of functions, we use the integration by parts method.

    • The integration by parts formula is:

      • ∫(u * dv) = u * v - ∫(v * du)
    • In this case, let u = ln(x) and dv = x dx.

    • Differentiating u and integrating dv, we get:

      • du = (1/x) dx and v = (1/2) * x^2
    • Applying the integration by parts formula, we get:

      • ∫(x * ln(x)) dx = (1/2) * x^2 * ln(x) - ∫((1/2) * x^2 * (1/x)) dx

      • Simplifying, we have:

        • ∫(x * ln(x)) dx = (1/2) * x^2 * ln(x) - (1/2) * ∫(x) dx
      • Integrating the remaining term, we get:

        • ∫(x) dx = (1/2) * x^2
      • Substituting the values, we have:

        • ∫(x * ln(x)) dx = (1/2) * x^2 * ln(x) - (1/2) * (1/2) * x^2 + C
  • Therefore, the value of the integral is (1/2) * x^2 * ln(x) - (1/4) * x^2 + C.

Problem 6

Evaluate ∫(cot^2(x)) dx.

  • Solution:

    • To integrate the cotangent squared function, we use a trigonometric identity.

    • The trigonometric identity is:

      • cot^2(x) = csc^2(x) - 1
    • Applying the identity, we get:

      • ∫(cot^2(x)) dx = ∫(csc^2(x) - 1) dx

      • Breaking the integral into two parts, we have:

        • ∫(csc^2(x)) dx - ∫(1) dx
    • Integrating the first part, we get:

      • ∫(csc^2(x)) dx = -cot(x)
    • Integrating the second part, we get:

      • ∫(1) dx = x
    • Adding the results, we have:

      • ∫(cot^2(x)) dx = -cot(x) - x + C
  • Therefore, the value of the integral is -cot(x) - x + C.

Problem 7

Find ∫(1/(x^2 + 9)) dx.

  • Solution:

    • To integrate the rational function, we can use the substitution method.

    • Let u = x^2 + 9. Then, du = 2x dx.

    • Rearranging the equation, we get:

      • (1/2) * du = x dx
    • Substituting the values, we have:

      • ∫(1/(x^2 + 9)) dx = (1/2) * ∫(1/u) du

      • Simplifying, we get:

        • ∫(1/(x^2 + 9)) dx = (1/2) * ln|u| + C

        • Since u = x^2 + 9, we have:

          • ∫(1/(x^2 + 9)) dx = (1/2) * ln|x^2 + 9| + C
  • Therefore, the value of the integral is (1/2) * ln|x^2 + 9| + C.

Problem 8

Evaluate ∫(sec^2(x) * tan(x)) dx.

  • Solution:

    • To integrate the product of secant squared and tangent functions, we can use a substitution.

    • Let u = sec(x). Then, du = sec(x) * tan(x) dx.

    • Substituting the values, we have:

      • ∫(sec^2(x) * tan(x)) dx = ∫(du) = u = sec(x)
  • Therefore, the value of the integral is sec(x) + C.

Problem 9

Find ∫(e^x - x^2 + 5x) dx.

  • Solution:

    • To find the integral of a combination of functions, we apply the power rule for integration to each term and sum the results.

    • Applying the power rule, we get:

      • ∫(e^x) dx = e^x

      • ∫(x^2) dx = (1/3) * x^3

      • ∫(5x) dx = (5/2) * x^2

    • Adding the results, we get:

      • ∫(e^x - x^2 + 5x) dx = e^x - (1/3) * x^3 + (5/2) * x^2 + C
  • Therefore, the value of the integral is e^x - (1/3) * x^3 + (5/2) * x^2 + C.

Problem 10

Evaluate ∫(x * e^(2x)) dx.

  • Solution:

    • To integrate a product of functions involving the exponential function, we can use the integration by parts method.

    • The integration by parts formula is:

      • ∫(u * dv) = u * v - ∫(v * du)
    • In this case, let u = x and dv = e^(2x) dx.

    • Differentiating u and integrating dv, we get:

      • du = dx and v = (1/2) * e^(2x)
    • Applying the integration by parts formula, we get:

      • ∫(x * e^(2x)) dx = (1/2) * x * e^(2x) - ∫((1/2) * e^(2x)) dx

      • Simplifying, we have:

        • ∫(x * e^(2x)) dx = (1/2) * x * e^(2x) - (1/2) * ∫(e^(2x)) dx
      • Integrating the remaining term, we get:

        • ∫(e^(2x)) dx = (1/2) * e^(2x)
      • Substituting the values, we have:

        • ∫(x * e^(2x)) dx = (1/2) * x * e^(2x) - (1/2) * (1/2) * e^(2x) + C
  • Therefore, the value of the integral is (1/2) * x * e^(2x) - (1/4) * e^(2x) + C.

  • Problem: Find the antiderivative of f(x) = 6x^2 - 4x + 2.
  • Solution:
    • Apply the power rule for integration to each term:
      • ∫(6x^2) dx = 2x^3
      • ∫(-4x) dx = -2x^2
      • ∫(2) dx = 2x
    • Summing the results, we get the antiderivative:
      • F(x) = 2x^3 - 2x^2 + 2x + C
  • Problem: Evaluate ∫(sin^2(x) + cos^2(x)) dx.
  • Solution:
    • Apply the Pythagorean identity sin^2(x) + cos^2(x) = 1:
      • ∫(1) dx = x
    • Therefore, ∫(sin^2(x) + cos^2(x)) dx = x + C
  • Problem: Find the integral of f(x) = 1/x.
  • Solution:
    • Apply the natural logarithm property of integrals:
      • ∫(1/x) dx = ln|x|
    • Therefore, the integral of f(x) is ln|x| + C
  • Problem: Evaluate ∫(3x^2 + 2x - 4) dx.
  • Solution:
    • Apply the power rule for integration to each term:
      • ∫(3x^2) dx = x^3
      • ∫(2x) dx = x^2
      • ∫(-4) dx = -4x
    • Summing the results, we get the integral value:
      • ∫(3x^2 + 2x - 4) dx = x^3 + x^2 - 4x + C
  • Problem: Find the integral of e^(3x).
  • Solution:
    • Apply the natural logarithm property of integrals:
      • ∫(e^(3x)) dx = (1/3) * e^(3x)
    • Therefore, the integral of e^(3x) is (1/3) * e^(3x) + C
  • Problem: Evaluate ∫(2sec^2(x) + 2tan(x)) dx.
  • Solution:
    • Apply the integral of sec^2(x):
      • ∫(2sec^2(x)) dx = 2tan(x)
    • Apply the integral of tan(x):
      • ∫(2tan(x)) dx = 2ln|sec(x)|
    • Therefore, the integral is 2tan(x) + 2ln|sec(x)| + C
  • Problem: Find ∫(5sin(x) + 3cos(x)) dx.
  • Solution:
    • Apply the integral of sin(x):
      • ∫(5sin(x)) dx = -5cos(x)
    • Apply the integral of cos(x):
      • ∫(3cos(x)) dx = 3sin(x)
    • Therefore, the integral is -5cos(x) + 3sin(x) + C
  • Problem: Evaluate ∫(4x^2 - 5x + 1/x) dx.
  • Solution:
    • Apply the power rule for integration to the polynomial terms:
      • ∫(4x^2) dx = (4/3) * x^3
      • ∫(-5x) dx = (-5/2) * x^2
    • Apply the natural logarithm property for the rational term:
      • ∫(1/x) dx = ln|x|
    • Summing the results, we get the integral value:
      • ∫(4x^2 - 5x + 1/x) dx = (4/3) * x^3 - (5/2) * x^2 + ln|x| + C
  • Problem: Find the integral of f(x) = e^(-x).
  • Solution:
    • Apply the natural logarithm property of integrals:
      • ∫(e^(-x)) dx = -e^(-x)
    • Therefore, the integral of f(x) is -e^(-x) + C
  • Problem: Evaluate ∫(7sin(x) - 3cos(x)) dx.
  • Solution:
    • Apply the integral of sin(x):
      • ∫(7sin(x)) dx = -7cos(x)
    • Apply the integral of cos(x):
      • ∫(-3cos(x)) dx = -3sin(x)
    • Therefore, the integral is -7cos(x) - 3sin(x) + C

Integral Calculus - Problem on integral of derivative form

Slide 21:

  • Problem: Find the integral of f(x) = ln(x). Solution:
  • Apply the power rule for integration with a natural logarithm:
    • ∫(ln(x)) dx = x ln(x) - ∫(x * (1/x)) dx = x ln(x) - ∫dx = x ln(x) - x + C

Slide 22:

  • Problem: Evaluate ∫(2x + 5) dx. Solution:
  • Apply the power rule for integration to each term:
    • ∫(2x) dx = x^2
    • ∫(5) dx = 5x
  • Summing the results, we get:
    • ∫(2x + 5) dx = x^2 + 5x + C

Slide 23:

  • Problem: Find the integral of f(x) = e^(2x). Solution:
  • Apply the natural logarithm property of integrals:
    • ∫(e^(2x)) dx = (1/2) * e^(2x)

Slide 24:

  • Problem: Evaluate ∫(3sin(x) + 4cos(x)) dx. Solution:
  • Apply the integral of sin(x):
    • ∫(3sin(x)) dx = -3cos(x)
  • Apply the integral of cos(x):
    • ∫(4cos(x)) dx = 4sin(x)
  • Summing the results, we get:
    • ∫(3sin(x) + 4cos(x)) dx = -3cos(x) + 4sin(x) + C

Slide 25:

  • Problem: Find the integral of f(x) = 1/(x^2 + 1). Solution:
  • Apply the arctan property of integrals:
    • ∫(1/(x^2 + 1)) dx = arctan(x) + C

Slide 26:

  • Problem: Evaluate ∫(2sec^2(x) - 3csc^2(x)) dx. Solution:
  • Apply the integral of sec^2(x):
    • ∫(2sec^2(x)) dx = 2tan(x)
  • Apply the integral of csc^2(x):
    • ∫(-3csc^2(x)) dx = -3cot(x)
  • Summing the results, we get:
    • ∫(2sec^2(x) - 3csc^2(x)) dx = 2tan(x) - 3cot(x) + C

Slide 27:

  • Problem: Find the integral of f(x) = x^2 * e^(3x). Solution:
  • Apply