-
Property 1: Linearity of Definite Integration
- If $f(x)$ and $g(x)$ are integrable functions and $c$ is a constant, then
- $\int_{a}^{b} cf(x) + g(x) : dx = c \int_{a}^{b} f(x) : dx + \int_{a}^{b} g(x) : dx$
-
Property 2: Change of Limits
- If $f(x)$ is integrable on $[a, b]$ and $c$ and $d$ are constants, then
- $\int_{a}^{a} f(x) : dx = 0$
- $\int_{a}^{b} f(x) : dx = -\int_{b}^{a} f(x) : dx$
- $\int_{a}^{b} f(x) : dx = \int_{a}^{c} f(x) : dx + \int_{c}^{b} f(x) : dx$
-
Property 3: Definite Integral of a Constant
- If $f(x) = c$, a constant, then
- $\int_{a}^{b} c : dx = c(b - a)$
-
Property 4: Additivity of Definite Integration
- If $f(x)$ is integrable on $[a, b]$ and $c$ is a constant, then
- $\int_{a}^{b} f(x) : dx = \int_{a}^{c} f(x) : dx + \int_{c}^{b} f(x) : dx$
-
Property 5: Conservation of Definite Integrals under Limits Transformation
- If $f(x)$ is integrable on $[a, b]$ and $c$ and $d$ are such that $f(c + d - x)$ is integrable on $[a, b]$, then
- $\int_{a}^{b} f(x) : dx = \int_{a}^{b} f(c + d - x) : dx$