Title: Indefinite Integral - Examples of specific types of problems
Introduction to indefinite integrals
Importance of finding antiderivatives
Overview of specific types of problems covered in this lecture
Type 1: Basic Power Rule
Formula: ∫ x n , d x = x n + 1 n + 1 + C \int x^n , dx = \frac{{x^{n+1}}}{{n+1}} + C ∫ x n , d x = n + 1 x n + 1 + C
Examples:
∫ x 3 , d x = x 4 4 + C \int x^3 , dx = \frac{{x^4}}{4} + C ∫ x 3 , d x = 4 x 4 + C
∫ x − 2 , d x = − 1 x + C \int x^{-2} , dx = -\frac{1}{{x}} + C ∫ x − 2 , d x = − x 1 + C
Type 2: Exponential Functions
Formula: ∫ e x , d x = e x + C \int e^x , dx = e^x + C ∫ e x , d x = e x + C
Examples:
∫ e 2 x , d x = e 2 x 2 + C \int e^{2x} , dx = \frac{{e^{2x}}}{2} + C ∫ e 2 x , d x = 2 e 2 x + C
∫ e − 3 x , d x = − 1 3 e − 3 x + C \int e^{-3x} , dx = -\frac{1}{{3}} e^{-3x} + C ∫ e − 3 x , d x = − 3 1 e − 3 x + C
Type 3: Trigonometric Functions
Formula: ∫ sin ( x ) , d x = − cos ( x ) + C \int \sin(x) , dx = -\cos(x) + C ∫ sin ( x ) , d x = − cos ( x ) + C
Examples:
∫ sin ( 2 x ) , d x = − cos ( 2 x ) 2 + C \int \sin(2x) , dx = -\frac{{\cos(2x)}}{2} + C ∫ sin ( 2 x ) , d x = − 2 c o s ( 2 x ) + C
∫ cos ( 3 x ) , d x = sin ( 3 x ) 3 + C \int \cos(3x) , dx = \frac{{\sin(3x)}}{3} + C ∫ cos ( 3 x ) , d x = 3 s i n ( 3 x ) + C
Type 4: Logarithmic Functions
Formula: ∫ 1 x , d x = ln ∣ x ∣ + C \int \frac{1}{x} , dx = \ln|x| + C ∫ x 1 , d x = ln ∣ x ∣ + C
Examples:
∫ 1 2 x , d x = ln ∣ 2 x ∣ + C \int \frac{1}{2x} , dx = \ln|2x| + C ∫ 2 x 1 , d x = ln ∣2 x ∣ + C
∫ 1 x + 1 , d x = ln ∣ x + 1 ∣ + C \int \frac{1}{x+1} , dx = \ln|x+1| + C ∫ x + 1 1 , d x = ln ∣ x + 1∣ + C
Type 5: Rational Functions
Formula: Integration by parts or partial fraction decomposition may be required
Examples:
∫ 1 x 2 + 1 , d x \int \frac{1}{x^2 + 1} , dx ∫ x 2 + 1 1 , d x (partial fraction decomposition needed)
∫ x ln ( x ) , d x \int x \ln(x) , dx ∫ x ln ( x ) , d x (integration by parts needed)
Type 6: Trigonometric Substitution
Formula: Used for integrating expressions containing square roots and trigonometric functions
Substitutions:
x = sin ( t ) x = \sin(t) x = sin ( t )
x = cos ( t ) x = \cos(t) x = cos ( t )
x = tan ( t ) x = \tan(t) x = tan ( t )
Examples:
∫ d x 1 − x 2 \int \frac{{dx}}{{\sqrt{1-x^2}}} ∫ 1 − x 2 d x
∫ 1 + x 2 , d x \int \sqrt{1+x^2} , dx ∫ 1 + x 2 , d x
Type 7: Hyperbolic Functions
Formula: ∫ sinh ( x ) , d x = cosh ( x ) + C \int \sinh(x) , dx = \cosh(x) + C ∫ sinh ( x ) , d x = cosh ( x ) + C
Examples:
∫ sinh ( 2 x ) , d x = cosh ( 2 x ) 2 + C \int \sinh(2x) , dx = \frac{{\cosh(2x)}}{2} + C ∫ sinh ( 2 x ) , d x = 2 c o s h ( 2 x ) + C
∫ cosh ( 3 x ) , d x = sinh ( 3 x ) 3 + C \int \cosh(3x) , dx = \frac{{\sinh(3x)}}{3} + C ∫ cosh ( 3 x ) , d x = 3 s i n h ( 3 x ) + C
Type 8: Integration by Parts
Formula: ∫ u , d v = u v − ∫ v , d u \int u , dv = uv - \int v , du ∫ u , d v = uv − ∫ v , d u
Examples:
∫ x cos ( x ) , d x \int x \cos(x) , dx ∫ x cos ( x ) , d x
∫ x 2 e x , d x \int x^2 e^x , dx ∫ x 2 e x , d x
Type 9: Improper Integrals
Formula: Evaluate limits as the interval approaches infinity or a point of discontinuity
Examples:
∫ 0 ∞ e − x , d x \int_0^\infty e^{-x} , dx ∫ 0 ∞ e − x , d x
∫ − ∞ ∞ 1 1 + x 2 , d x \int_{-\infty}^{\infty} \frac{1}{1+x^2} , dx ∫ − ∞ ∞ 1 + x 2 1 , d x
Type 10: Integration by Substitution
Formula: ∫ f ( g ( x ) ) g ’ ( x ) , d x = ∫ f ( u ) , d u \int f(g(x))g’(x) , dx = \int f(u) , du ∫ f ( g ( x )) g ’ ( x ) , d x = ∫ f ( u ) , d u , where u = g ( x ) u=g(x) u = g ( x )
Examples:
∫ 2 x cos ( x 2 ) , d x \int 2x \cos(x^2) , dx ∫ 2 x cos ( x 2 ) , d x
∫ e x , d x \int e^{\sqrt{x}} , dx ∫ e x , d x
Type 11: Integration of Composite Functions
Formula: ∫ f ( g ( x ) ) , d x = F ( g ( x ) ) , d x \int f(g(x)) , dx = F(g(x)) , dx ∫ f ( g ( x )) , d x = F ( g ( x )) , d x
Examples:
∫ 1 − sin ( x ) , d x \int \sqrt{1-\sin(x)} , dx ∫ 1 − sin ( x ) , d x
∫ 1 1 − x 2 , d x \int \frac{1}{\sqrt{1-x^2}} , dx ∫ 1 − x 2 1 , d x
Type 12: Integration of Rational Functions
Formula: Use partial fraction decomposition to simplify the expression
Examples:
∫ 2 x + 3 x 2 − 4 x + 4 , d x \int \frac{2x+3}{x^2-4x+4} , dx ∫ x 2 − 4 x + 4 2 x + 3 , d x
∫ x 3 − 1 x − 1 , d x \int \frac{x^3-1}{x-1} , dx ∫ x − 1 x 3 − 1 , d x
Type 13: Integration of Trigonometric Products
Formula: Use product-to-sum identities or trigonometric identities to simplify the expression
Examples:
∫ sin 2 ( x ) cos 3 ( x ) , d x \int \sin^2(x) \cos^3(x) , dx ∫ sin 2 ( x ) cos 3 ( x ) , d x
∫ tan ( x ) sec 2 ( x ) , d x \int \tan(x) \sec^2(x) , dx ∫ tan ( x ) sec 2 ( x ) , d x
Type 14: Integration of Exponential Functions
Formula: Apply appropriate substitution or integration by parts
Examples:
∫ e x cos ( x ) , d x \int e^x \cos(x) , dx ∫ e x cos ( x ) , d x
∫ e 2 x sin ( 3 x ) , d x \int e^{2x} \sin(3x) , dx ∫ e 2 x sin ( 3 x ) , d x
Type 15: Integration of Logarithmic Functions
Formula: Integration by parts or substitution may be required
Examples:
∫ x ln ( x ) , d x \int x \ln(x) , dx ∫ x ln ( x ) , d x
∫ sin − 1 ( x ) , d x \int \sin^{-1}(x) , dx ∫ sin − 1 ( x ) , d x
Type 16: Integration of Hyperbolic Functions
Formula: Use appropriate hyperbolic identities or integration techniques
Examples:
∫ sinh 3 ( x ) , d x \int \sinh^3(x) , dx ∫ sinh 3 ( x ) , d x
∫ cosh ( 2 x ) sinh ( 2 x ) , d x \int \cosh(2x) \sinh(2x) , dx ∫ cosh ( 2 x ) sinh ( 2 x ) , d x
Type 17: Integration of Trigonometric Powers
Formula: Use various trigonometric identities and manipulation techniques
Examples:
∫ sin 3 ( x ) cos 2 ( x ) , d x \int \sin^3(x) \cos^2(x) , dx ∫ sin 3 ( x ) cos 2 ( x ) , d x
∫ tan 2 ( x ) sec 3 ( x ) , d x \int \tan^2(x) \sec^3(x) , dx ∫ tan 2 ( x ) sec 3 ( x ) , d x
Type 18: Inverse Trigonometric Functions
Formula: Use appropriate substitution or trigonometric identities
Examples:
∫ 1 1 − x 2 , d x \int \frac{1}{\sqrt{1-x^2}} , dx ∫ 1 − x 2 1 , d x
∫ 1 1 + x 2 , d x \int \frac{1}{1+x^2} , dx ∫ 1 + x 2 1 , d x
Type 19: Integration of Powers of Trigonometric Functions
Formula: Simplify using power reduction formulas or appropriate manipulation
Examples:
∫ sin 5 ( x ) , d x \int \sin^5(x) , dx ∫ sin 5 ( x ) , d x
∫ cos 4 ( x ) , d x \int \cos^4(x) , dx ∫ cos 4 ( x ) , d x
Type 20: Integration of Inverse Trigonometric Functions
Formula: Use appropriate substitution or trigonometric identities
Examples:
∫ 1 1 − x 2 , d x \int \frac{1}{\sqrt{1-x^2}} , dx ∫ 1 − x 2 1 , d x
∫ 1 1 + x 2 , d x \int \frac{1}{1+x^2} , dx ∫ 1 + x 2 1 , d x
Type 21: Integration of Powers of Trigonometric Functions
Formula: Simplify using power reduction formulas or appropriate manipulation
Examples:
∫ sin 5 ( x ) , d x \int \sin^5(x) , dx ∫ sin 5 ( x ) , d x
∫ cos 4 ( x ) , d x \int \cos^4(x) , dx ∫ cos 4 ( x ) , d x
Type 22: Integration of Rational Expressions with Trigonometric Functions
Formula: Use trigonometric identities or appropriate substitution
Examples:
∫ sin 2 ( x ) cos 4 ( x ) , d x \int \frac{\sin^2(x)}{\cos^4(x)} , dx ∫ c o s 4 ( x ) s i n 2 ( x ) , d x
∫ sec ( x ) tan 2 ( x ) , d x \int \frac{\sec(x)}{\tan^2(x)} , dx ∫ t a n 2 ( x ) s e c ( x ) , d x
Type 23: Integration involving Absolute Values
Formula: Split into cases and solve each separately
Examples:
∫ ∣ x − 2 ∣ , d x \int |x-2| , dx ∫ ∣ x − 2∣ , d x
∫ ∣ x 2 − 4 ∣ , d x \int |x^2-4| , dx ∫ ∣ x 2 − 4∣ , d x
Type 24: Integration of Hyperbolic Trigonometric Functions
Formula: Use corresponding hyperbolic identities or appropriate techniques
Examples:
∫ sinh 2 ( x ) , d x \int \sinh^2(x) , dx ∫ sinh 2 ( x ) , d x
∫ cosh ( 2 x ) sinh ( 3 x ) , d x \int \cosh(2x) \sinh(3x) , dx ∫ cosh ( 2 x ) sinh ( 3 x ) , d x
Type 25: Integration of Logarithmic-exponential Functions
Formula: Apply integration by parts or substitution
Examples:
∫ x ln ( e x ) , d x \int x \ln(e^x) , dx ∫ x ln ( e x ) , d x
∫ e x ln ( x ) , d x \int e^x \ln(x) , dx ∫ e x ln ( x ) , d x
Type 26: Integration of Trigonometric Functions raised to a Power
Formula: Use reduction formula or appropriate manipulation techniques
Examples:
∫ sin 3 ( x ) cos 2 ( x ) , d x \int \sin^3(x) \cos^2(x) , dx ∫ sin 3 ( x ) cos 2 ( x ) , d x
∫ tan 2 ( x ) sec 3 ( x ) , d x \int \tan^2(x) \sec^3(x) , dx ∫ tan 2 ( x ) sec 3 ( x ) , d x
Type 27: Integration of Hyperbolic Functions raised to a Power
Formula: Use reduction formula or appropriate manipulation techniques
Examples:
∫ sinh 3 ( x ) cosh 2 ( x ) , d x \int \sinh^3(x) \cosh^2(x) , dx ∫ sinh 3 ( x ) cosh 2 ( x ) , d x
$\int \tanh^2(x) \sech^3(x) , dx$
Type 28: Integration of Arc Length
Formula: Apply integration techniques to calculate arc length
Examples:
∫ 1 + ( cos ( x ) ) 2 , d x \int \sqrt{1+(\cos(x))^2} , dx ∫ 1 + ( cos ( x ) ) 2 , d x
∫ 1 + ( sinh ( x ) ) 2 , d x \int \sqrt{1+(\sinh(x))^2} , dx ∫ 1 + ( sinh ( x ) ) 2 , d x
Type 29: Integration of Logarithmic Trigonometric Functions
Formula: Use substitution or appropriate manipulation techniques
Examples:
∫ ln ( sin ( x ) ) , d x \int \ln(\sin(x)) , dx ∫ ln ( sin ( x )) , d x
∫ ln ( cos ( x ) ) , d x \int \ln(\cos(x)) , dx ∫ ln ( cos ( x )) , d x
Resume presentation
Title: Indefinite Integral - Examples of specific types of problems Introduction to indefinite integrals Importance of finding antiderivatives Overview of specific types of problems covered in this lecture