F'(x) = f(x)
, then F(x)
is an antiderivative of f(x)
.
Example:f(x) = 2x + 3
.
Solution:F(x) = ∫ (2x + 3) dx
F(x) = ∫ 2x dx + ∫ 3 dx
F(x) = x^2 + 3x + C
, where C
is the constant of integration.F'(x) = f(x)
, then the definite integral of f(x)
from a
to b
is denoted as ∫ [a, b] f(x) dx
.
Example:∫ [1, 3] (4x^2 + 3x) dx
.
Solution:∫ [1, 3] (4x^2 + 3x) dx = [ (x^3) + (3/2)x^2 ] [1, 3]
(3^3 + (3/2)(3^2)) - (1^3 + (3/2)(1^2))
54 - 4 = 50
.∫ (af(x) + bg(x)) dx = a∫ f(x) dx + b∫ g(x) dx
∫ af(x) dx = a∫ f(x) dx
(where a
is a constant)∫ (f(x) ± g(x)) dx = ∫ f(x) dx ± ∫ g(x) dx
∫ x^n dx = (1/(n+1)) * x^(n+1) + C
(where n
is any real number)
Example:∫ (3x^2 + 5x - 2) dx
.
Solution:∫ (3x^2 + 5x - 2) dx = (3/3) * x^3 + (5/2) * x^2 - 2x + C
x^3 + (5/2) * x^2 - 2x + C
.f(g(x))*g'(x)
can be transformed by substituting u = g(x)
.
Example:∫ 2x sin(x^2) dx
.
Solution:u = x^2
.du = 2x dx
.∫ sin(u) du = -cos(u) + C
.-cos(x^2) + C
.∫ u dv = uv - ∫ v du
.
Example:∫ x cos(x) dx
.
Solution:u = x
and dv = cos(x) dx
.u
, we get du = dx
.dv
, we get v = sin(x)
.∫ x cos(x) dx = x sin(x) - ∫ sin(x) dx
.x sin(x) + cos(x) + C
.∫ sin(x) dx = -cos(x) + C
∫ cos(x) dx = sin(x) + C
∫ sec^2(x) dx = tan(x) + C
∫ csc^2(x) dx = -cot(x) + C
∫ sec(x) tan(x) dx = sec(x) + C
∫ csc(x) cot(x) dx = -csc(x) + C
Example:∫ sin^3(x) cos^2(x) dx
.
Solution:sin^2(x) = 1 - cos^2(x)
, we can rewrite the integral as ∫ sin(x) (1 - cos^2(x)) cos^2(x) dx
.∫ sin(x) cos^2(x) dx - ∫ sin(x) cos^4(x) dx
.-(1/3) cos^3(x) + (1/5) cos^5(x) + C
.∫ e^x dx = e^x + C
∫ a^x dx = (a^x) / ln(a) + C
∫ log(a, x) dx = x (log(a, x) - 1) + C
∫ ln(x) dx = x ln(x) - x + C
Example:∫ e^x ln(e^x) dx
.
Solution:ln(a^x) = x ln(a)
, we can rewrite the integral as ∫ x e^x dx
.∫ x e^x dx = x e^x - e^x + C
.∫ (x^2 + 2x + 1) / (x^3 + 3x^2 + 3x) dx
.
Solution:(x)(x+1)^2
.A/(x) + B/(x+1) + C/(x+1)^2
.A = -1
, B = 3
, and C = -2
.-ln|x| + 3ln|x+1| - 2/(x+1) + C
.F'(x) = f(x)
, then F(x)
is an antiderivative of f(x}
.
Example:f(x) = 2x + 3
.
Solution:F(x) = ∫ (2x + 3) dx
F(x) = ∫ 2x dx + ∫ 3 dx
F(x) = x^2 + 3x + C
, where C
is the constant of integration.F'(x) = f(x)
, then the definite integral of f(x)
from a
to b
is denoted as ∫ [a, b] f(x) dx
.
Example:∫ [1, 3] (4x^2 + 3x) dx
.
Solution:∫ [1, 3] (4x^2 + 3x) dx = [ (x^3) + (3/2)x^2 ] [1, 3]
(3^3 + (3/2)(3^2)) - (1^3 + (3/2)(1^2))
54 - 4 = 50
.∫ (af(x) + bg(x)) dx = a∫ f(x) dx + b∫ g(x) dx
∫ af(x) dx = a∫ f(x) dx
(where a
is a constant)∫ (f(x) ± g(x)) dx = ∫ f(x) dx ± ∫ g(x) dx
∫ x^n dx = (1/(n+1)) * x^(n+1) + C
(where n
is any real number)
Example:∫ (3x^2 + 5x - 2) dx
.
Solution:∫ (3x^2 + 5x - 2) dx = (3/3) * x^3 + (5/2) * x^2 - 2x + C
x^3 + (5/2) * x^2 - 2x + C
.f(g(x))*g'(x)
can be transformed by substituting u = g(x)
.
Example:∫ 2x sin(x^2) dx
.
Solution:u = x^2
.du = 2x dx
.∫ sin(u) du = -cos(u) + C
.-cos(x^2) + C
.∫ u dv = uv - ∫ v du
.
Example:∫ x cos(x) dx
.
Solution:u = x
and dv = cos(x) dx
.u
, we get du = dx
.dv
, we get v = sin(x)
.∫ x cos(x) dx = x sin(x) - ∫ sin(x) dx
.x sin(x) + cos(x) + C
.∫ sin(x) dx = -cos(x) + C
∫ cos(x) dx = sin(x) + C
∫ sec^2(x) dx = tan(x) + C
∫ csc^2(x) dx = -cot(x) + C
∫ sec(x) tan(x) dx = sec(x) + C
∫ csc(x) cot(x) dx = -csc(x) + C
Example:∫ sin^3(x) cos^2(x) dx
.
Solution:sin^2(x) = 1 - cos^2(x)
, we can rewrite the integral as ∫ sin(x) (1 - cos^2(x)) cos^2(x) dx
.∫ sin(x) cos^2(x) dx - ∫ sin(x) cos^4(x) dx
.-(1/3) cos^3(x) + (1/5) cos^5(x) + C
.The integrals of exponential and logarithmic functions can be evaluated using specific rules.
Some common integrals include:
∫ e^x dx = e^x + C
∫ a^x dx = (a^x) / ln(a) + C
∫ log(a, x) dx = x (log(a, x) - 1) + C
∫ ln(x) dx = x ln(x) - x + C
Example:Evaluate ∫ e^x ln(e^x) dx
.
Solution:
Using the property ln(a^x) = x ln(a)
, we can rewrite the integral as ∫ x e^x dx
.
Applying the known integral ∫ x e^x dx = x e^x - e^x + C
.
x = a sin(t)
x = a cos(t)
x = a tan(t)
Example:∫ √(4 - x^2) dx
.
Solution:x = 2 sin(t)
, we have dx = 2 cos(t) dt
.∫ √(4 - 4sin^2(t)) * 2cos(t) dt
.∫ 2 cos^2(t) dt
.cos^2(t) = (1 + cos(2t))/2
, we have ∫ (1 + cos(2t)) dt
.t + (sin(2t))/2 + C
.t = sin^(-1)(x/2)
, we have the final answer as sin^(-1)(x/2) + (sin(x))/2 + C
.∫ (7x - 1) / (x^2 - x - 2) dx
.
Solution:(x - 2)(x + 1)
.∫ [A / (x - 2)] + [B / (x + 1)] dx
.A = -3
and B = 4
.-3 ln|x - 2| + 4 ln|x + 1| + C
.∫ (5x + 3) / (x^2 + 4x + 3) dx
.
Solution:(x + 1)(x + 3)
.∫ [A / (x + 1)] + [B / (x + 3)] dx
.A = 2
and B = 1
.2 ln|x + 1| + ln|x + 3| + C
.∫ (x^2 - 3x + 2) / (x^3 - 6x^2 + 11x - 6) dx
.
Solution:(x - 1)^2 (x - 2)
.