- Recap of L’Hopital’s Rule
- Traditional form: 0/0
- Other indeterminant forms:
-
Example 1:
- lim (x → ∞) (x^2 + 3x)/(5x - 2)
- Apply L’Hopital’s rule: lim (x → ∞) (2x + 3)/(5)
- Final answer: ∞/5
-
Example 2:
- lim (x → ∞) (2x^3 - 5x^2)/(3x^3 - 8x - 2)
- Apply L’Hopital’s rule: lim (x → ∞) (6x^2 - 10x)/(9x^2 - 8)
- Final answer: 6/9 = 2/3
-
Example 1:
- lim (x → ∞) (x * ln(x))
- Rewrite as: lim (x → ∞) (ln(x))/(1/x)
- Apply L’Hopital’s rule: lim (x → ∞) (1/x)/(−1/x^2)
- Final answer: lim (x → ∞) (x) = ∞
-
Example 2:
- lim (x → 0) (x * sin(1/x))
- Rewrite as: lim (x → 0) (sin(1/x))/(1/x)
- Apply L’Hopital’s rule: lim (x → 0) (cos(1/x) * (−1/x^2))/(−1/x^2)
- Final answer: lim (x → 0) cos(1/x) does not exist
-
Example 1:
- lim (x → ∞) (x^2 - x)
- Rewrite as: lim (x → ∞) (1/x^2 - 1/x)
- Apply L’Hopital’s rule: lim (x → ∞) (−2/x^3 + 1/x^2)
- Final answer: lim (x → ∞) (−2/x^3 + 1/x^2) = 0
-
Example 2:
- lim (x → ∞) (x^3 - √x)
- Rewrite as: lim (x → ∞) (1/x - 1/√x)
- Apply L’Hopital’s rule: lim (x → ∞) (−1/x^2 - −1/2x^3)
- Final answer: lim (x → ∞) (−1/x^2 + 1/2x^3) = 0
-
Example 1:
- lim (x → 0) (x^x)
- Rewrite as: lim (x → 0) (e^(xlnx))
- Apply L’Hopital’s rule: lim (x → 0) (e^(lnx + x/x))
- Final answer: lim (x → 0) (e^(lnx)) = 1
-
Example 2:
- lim (x → 0) (x^sinx)
- Rewrite as: lim (x → 0) (e^(sinxlnx))
- Apply L’Hopital’s rule: lim (x → 0) (e^((cosxlnx + sinx/x)))
- Final answer: lim (x → 0) (e^(cosxlnx)) = 1
-
Example 1:
- lim (x → ∞) (x^0)
- Rewrite as: lim (x → ∞) (e^(0lnx))
- Apply L’Hopital’s rule: lim (x → ∞) (e^(1/xlnx))
- Final answer: lim (x → ∞) (e^(1/xlnx)) = 1
-
Example 2:
- lim (x → ∞) (x^(1/lnx))
- Rewrite as: lim (x → ∞) (e^(lnx^(1/lnx)))
- Apply L’Hopital’s rule: lim (x → ∞) (e^((1/lnx) * (1/lnx) / x))
- Final answer: lim (x → ∞) (e^(1/∞)) = 1
Recap of L’Hopital’s Rule
- L’Hopital’s rule allows us to evaluate limits involving indeterminant forms.
- Indeterminant forms: 0/0, ∞/∞, 0 * ∞, ∞ - ∞, 0^0, ∞^0.
- Apply L’Hopital’s rule by taking the derivative of the numerator and denominator.
- Repeat the process until an indeterminant form is resolved or an answer is obtained.
- L’Hopital’s rule is applicable when the limit exists, and both numerator and denominator approach zero or infinity.
-
Example 1:
- lim (x → 1) (x^2 - 1)/(x - 1)
- Apply L’Hopital’s rule: lim (x → 1) (2x)/(1)
- Final answer: 2
-
Example 2:
- lim (x → 0) (sinx)/x
- Apply L’Hopital’s rule: lim (x → 0) (cosx)/(1)
- Final answer: 1
-
Example 3:
- lim (x → π/2) (sinx)/(cosx - 1)
- Apply L’Hopital’s rule: lim (x → π/2) (cosx)/(-sinx)
- Final answer: lim (x → π/2) (cosx)/(-sinx) does not exist
-
Example 4:
- lim (x → 0) (e^x - 1)/x
- Apply L’Hopital’s rule: lim (x → 0) (e^x)/(1)
- Final answer: 1
- Example 5:
- lim (x → 0) (1 - cosx)/x^2
- Rewrite as: lim (x → 0) (2sin^2(x/2))/(x^2)
- Apply L’Hopital’s rule: lim (x → 0) (2sin(x))/(2x)
- Final answer: 1
- Example 1:
- lim (x → ∞) (e^x * ln(x))
- Apply L’Hopital’s rule: lim (x → ∞) (e^x)/(1/x)
- Final answer: lim (x → ∞) (e^x) = ∞
- Example 2:
- lim (x → ∞) (x * ln(x^2))
- Rewrite as: lim (x → ∞) (ln(x))/(1/x^2)
- Apply L’Hopital’s rule: lim (x → ∞) (1/x)/(−2/x^3)
- Final answer: lim (x → ∞) (-2/x^3) = 0
- Example 1:
- lim (x → ∞) (x^2 - x)
- Rewrite as: lim (x → ∞) (1/x^2 - 1/x)
- Apply L’Hopital’s rule: lim (x → ∞) (−2/x^3 + 1/x^2)
- Final answer: lim (x → ∞) (−2/x^3 + 1/x^2) = 0
- Example 2:
- lim (x → ∞) (x^3 - √x)
- Rewrite as: lim (x → ∞) (1/x - 1/√x)
- Apply L’Hopital’s rule: lim (x → ∞) (−1/x^2 - −1/2x^3)
- Final answer: lim (x → ∞) (−1/x^2 + 1/2x^3) = 0
- Example 1:
- lim (x → 0) (x^x)
- Rewrite as: lim (x → 0) (e^(xlnx))
- Apply L’Hopital’s rule: lim (x → 0) (e^(lnx + x/x))
- Final answer: lim (x → 0) (e^(lnx)) = 1
- Example 2:
- lim (x → 0) (x^sinx)
- Rewrite as: lim (x → 0) (e^(sinxlnx))
- Apply L’Hopital’s rule: lim (x → 0) (e^((cosxlnx + sinx/x)))
- Final answer: lim (x → 0) (e^(cosxlnx)) = 1
- Example 1:
- lim (x → ∞) (x^0)
- Rewrite as: lim (x → ∞) (e^(0lnx))
- Apply L’Hopital’s rule: lim (x → ∞) (e^(1/xlnx))
- Final answer: lim (x → ∞) (e^(1/xlnx)) = 1
- Example 2:
- lim (x → ∞) (x^(1/lnx))
- Rewrite as: lim (x → ∞) (e^(lnx^(1/lnx)))
- Apply L’Hopital’s rule: lim (x → ∞) (e^((1/lnx) * (1/lnx) / x))
- Final answer: lim (x → ∞) (e^(1/∞)) = 1
Recap of L’Hopital’s Rule
- L’Hopital’s rule allows us to evaluate limits involving indeterminant forms.
- Indeterminant forms: 0/0, ∞/∞, 0 * ∞, ∞ - ∞, 0^0, ∞^0.
- Apply L’Hopital’s rule by taking the derivative of the numerator and denominator.
- Repeat the process until an indeterminant form is resolved or an answer is obtained.
- L’Hopital’s rule is applicable when the limit exists, and both numerator and denominator approach zero or infinity.
- Example 1:
- lim (x → 1) (x^2 - 1)/(x - 1)
- Apply L’Hopital’s rule: lim (x → 1) (2x)/(1)
- Final answer: 2
- Example 2:
- lim (x → 0) (sinx)/x
- Apply L’Hopital’s rule: lim (x → 0) (cosx)/(1)
- Final answer: 1
- Example 3:
- lim (x → π/2) (sinx)/(cosx - 1)
- Apply L’Hopital’s rule: lim (x → π/2) (cosx)/(-sinx)
- Final answer: lim (x → π/2) (cosx)/(-sinx) does not exist
- Example 4:
- lim (x → 0) (e^x - 1)/x
- Apply L’Hopital’s rule: lim (x → 0) (e^x)/(1)
- Final answer: 1
- Example 5:
- lim (x → 0) (1 - cosx)/x^2
- Rewrite as: lim (x → 0) (2sin^2(x/2))/(x^2)
- Apply L’Hopital’s rule: lim (x → 0) (2sin(x))/(2x)
- Final answer: 1
- Example 6:
- lim (x → 0) ((e^x - 1) / x) * (1 - cos(x))
- Apply L’Hopital’s rule: lim (x → 0) (e^x)/(1) * sin(x)
- Final answer: 0
Summary
- L’Hopital’s rule is a powerful tool for evaluating limits.
- It can be applied to other indeterminant forms such as ∞/∞, 0 * ∞, ∞ - ∞, 0^0, ∞^0.
- The key is to recognize the form and appropriately differentiate the numerator and denominator.
- With practice, using L’Hopital’s rule becomes easier and helps solve a wide range of limit problems.
- Other Indeterminant Forms: ∞/∞
- Example 1:
- lim (x → ∞) (x^3 + 2x^2)/(x^2 + 3x)
- Apply L’Hopital’s rule: lim (x → ∞) (3x^2 + 4x)/(2x + 3)
- Final answer: ∞/2 = ∞
- Example 2:
- lim (x → ∞) (2x^2 + 3√x)/(4x^2 - 5x)
- Apply L’Hopital’s rule: lim (x → ∞) (4x + (3/(2√x)))/(8x - 5)
- Final answer: lim (x → ∞) (4x)/(8x) = 1/2
- Other Indeterminant Forms: 0 * ∞
- Example 1:
- lim (x → ∞) (x^2 * e^(1/x))
- Apply L’Hopital’s rule: lim (x → ∞) (2x * e^(1/x) - x^2 * e^(1/x) / x^2)
- Final answer: lim (x → ∞) (2 * e^(1/x) - 1) = 1
- Example 2:
- lim (x → 0) (x * ln(x^3))
- Rewrite as: lim (x → 0) (ln(x))/((1/x^3))
- Apply L’Hopital’s rule: lim (x → 0) (1/x)/(−3/x^4)
- Final answer: lim (x → 0) (−x/3) = 0
- Other Indeterminant Forms: ∞ - ∞
- Example 1:
- lim (x → ∞) (x^3 - x^2 - 2x)/(2x - 3)
- Apply L’Hopital’s rule: lim (x → ∞) (3x^2 - 2x - 2)/(2)
- Final answer: (3∞^2 - 2∞ - 2)/2 = ∞
- Example 2:
- lim (x → ∞) (x^4 - √x - 1)/(2x - 5)
- Rewrite as: lim (x → ∞) (1 - 1/√x - 1/x^4)/(2 - 5/x)
- Apply L’Hopital’s rule: lim (x → ∞) (1/(2x^2) + 4/x^5)/(5/x^2)
- Final answer: (1/(2∞^2) + 4/∞^5)/(5/∞^2) = 0
- Other Indeterminant Forms: 0^0
- Example 1:
- lim (x → 0) (x^x * (1 + x))
- Apply L’Hopital’s rule: lim (x → 0) ((1 + ln(x)) * x^x + x^x)/(1 + x)
- Final answer: lim (x → 0) ((1 + ln(x)) * x^x + x^x)/(1 + x) = 1
- Example 2:
- lim (x → 0) ((1/x)^(1/x) * (ln(1/x) + 1))
- Rewrite as: lim (x → 0) (e^(-ln(x)/x) * (-ln(x)/x^2 - 1/x^2 + 1))