Notes from Toppers
Vector Products, Angular Velocity, and Angular Acceleration
1. Vector Products:
Concepts
- (a) Cross Product: Scalar Triple Product (Ref. NCERT, Class 12, Chapter – Vectors, Exemplar Problem 20 )
- (b) Vector Product of two vectors A and B: (\overrightarrow A \times \overrightarrow B)
(Ref: NCERT, Class 12, Ch-4 Vectors, Page No. 94)
- (c) Cross Product in determinant form:
$$\overrightarrow A \times \overrightarrow B = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$
(Ref: NCERT, Class 12, Ch-4 Vectors, Page No. 96)
-
(d) Properties:
-
$$|\overrightarrow A \times \overrightarrow B|=AB \text{ sin }\theta$$
-
(\overrightarrow A \times \overrightarrow B= -\overrightarrow B \times \overrightarrow A)
-
(\overrightarrow A \times (\overrightarrow B + \overrightarrow C) = \overrightarrow A \times \overrightarrow B + \overrightarrow A\times\overrightarrow C)
-
(e) Applications:
-
Work Done by a Torque:
$$\overrightarrow \tau = \overrightarrow r\times \overrightarrow F$$
- Torque produced by a Force:
$$\overrightarrow N=q(\overrightarrow v\times \overrightarrow B)$$
- Angular Momentum:
$$\overrightarrow L=m\overrightarrow r \times \overrightarrow v$$
2. Angular Velocity:
Concepts
-
(a) Concept: Angular velocity is a vector quantity that specifies the rate of change of angular displacement of an object rotating about an axis.
-
(b) Units: Radian per second (rad/s).
-
(c) Relation with linear velocity: $$v=r\omega$$
-
(d) Angular velocity in Rotational Motion: (\omega = \frac{d\theta}{dt})
(Ref: NCERT, Class 11, Ch-7, System of Particles and Rotational Motion, Page No. 161)
3. Angular Acceleration:
Concepts
-
(a) Concept: It is a vector quantity that describes the rate of change of angular velocity.
-
(b) Units: Radian per second square (rad/s2).
-
(c) Calculation:
$$\alpha = \frac{d\omega}{dt}=\frac{d^2\theta}{dt^2}$$ (Ref: NCERT, Class 11, Ch-7, System of Particles and Rotational Motion, Page No. 161)
4. Interconnection:
-
Angular acceleration and angular velocity are interrelated through the equation: $$\alpha = \frac{d\omega}{dt}$$
-
Torque acting on a rigid body leads to angular acceleration:
$$\overrightarrow \tau=I\overrightarrow \alpha$$
- Moment of Inertia (I): Resistance of an object to angular acceleration.
5. Applications:
- Solving Rotational Dynamics Problems
- Rigid Body Dynamics
- Gyroscope and Motion