Notes from Toppers

Vector Products, Angular Velocity, and Angular Acceleration

1. Vector Products:

Concepts

  • (a) Cross Product: Scalar Triple Product (Ref. NCERT, Class 12, Chapter – Vectors, Exemplar Problem 20 )
  • (b) Vector Product of two vectors A and B: (\overrightarrow A \times \overrightarrow B)

(Ref: NCERT, Class 12, Ch-4 Vectors, Page No. 94)

  • (c) Cross Product in determinant form:

$$\overrightarrow A \times \overrightarrow B = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

(Ref: NCERT, Class 12, Ch-4 Vectors, Page No. 96)

  • (d) Properties:

  • $$|\overrightarrow A \times \overrightarrow B|=AB \text{ sin }\theta$$

  • (\overrightarrow A \times \overrightarrow B= -\overrightarrow B \times \overrightarrow A)

  • (\overrightarrow A \times (\overrightarrow B + \overrightarrow C) = \overrightarrow A \times \overrightarrow B + \overrightarrow A\times\overrightarrow C)

  • (e) Applications:

  • Work Done by a Torque:

$$\overrightarrow \tau = \overrightarrow r\times \overrightarrow F$$

  • Torque produced by a Force:

$$\overrightarrow N=q(\overrightarrow v\times \overrightarrow B)$$

  • Angular Momentum:

$$\overrightarrow L=m\overrightarrow r \times \overrightarrow v$$

2. Angular Velocity:

Concepts

  • (a) Concept: Angular velocity is a vector quantity that specifies the rate of change of angular displacement of an object rotating about an axis.

  • (b) Units: Radian per second (rad/s).

  • (c) Relation with linear velocity: $$v=r\omega$$

  • (d) Angular velocity in Rotational Motion: (\omega = \frac{d\theta}{dt})

(Ref: NCERT, Class 11, Ch-7, System of Particles and Rotational Motion, Page No. 161)

3. Angular Acceleration:

Concepts

  • (a) Concept: It is a vector quantity that describes the rate of change of angular velocity.

  • (b) Units: Radian per second square (rad/s2).

  • (c) Calculation:

$$\alpha = \frac{d\omega}{dt}=\frac{d^2\theta}{dt^2}$$ (Ref: NCERT, Class 11, Ch-7, System of Particles and Rotational Motion, Page No. 161)

4. Interconnection:

  • Angular acceleration and angular velocity are interrelated through the equation: $$\alpha = \frac{d\omega}{dt}$$

  • Torque acting on a rigid body leads to angular acceleration:

$$\overrightarrow \tau=I\overrightarrow \alpha$$

  • Moment of Inertia (I): Resistance of an object to angular acceleration.

5. Applications:

  • Solving Rotational Dynamics Problems
  • Rigid Body Dynamics
  • Gyroscope and Motion