Jee Main 2024 31 01 2024 Shift 2

Question 1

For the block shown, $F _1$ is the minimum force required to move block upwards and $F _2$ is the minimum force required to prevent it from slipping, find $\left|\vec{F} _1-\vec{F} _2\right|$

(1) $50 \sqrt{3} N$

(2) $5 \sqrt{3} N$

(3) $25 \sqrt{3} N$

(4) $\frac{5 \sqrt{3}}{2} N$

Show Answer

Answer: (2)

Solution:

$f _K=\mu m g \cos \theta$

$ \begin{aligned} & =0.1 \times \frac{50 \times \sqrt{3}}{2} \\ & =2.5 \sqrt{3} N \end{aligned} $

$F _1=m g \sin \theta+f _K$

$ =25+2.5 \sqrt{3} $

$F _2=m g \sin \theta-f _K$

$ =25-2.5 \sqrt{3} $

$\therefore F _1-F _2=5 \sqrt{3} N$

Question 2

Force on a particle moving in straight line is given by $\vec{F}=6 t^{2} \hat{i}-3 t \hat{j}$ and velocity is $\vec{v}=3 t^{2} \hat{i}+6 t \hat{j}$. Find power at $t=2$.

(1) $216 W$

(2) $108 W$

(3) $0 W$

(4) $54 W$

Show Answer

Answer: (1)

Solution:

$P=\vec{F} \cdot \vec{V}$

$ \begin{aligned} & =18 t^{4}-18 t^{2} \\ \Rightarrow & P(t=2)=18[16-4]=216 W \end{aligned} $

Question 3

If $E=\frac{A-x^{2}}{B t}$ where $E$ is energy, $x$ is displacement and $t$ is time. Find dimensions of $A B$

(1) $\left[M^{-1} L^{2} T\right]$

(2) $\left[ML^{2} T^{-1}\right]$

(3) $\left[M^{-1} L^{2} T^{-2}\right]$

(4) $\left[ML^{2} T^{-2}\right]$

Show Answer

Answer: (1)

Solution:

$[A]=L^{2}$

$ B=\frac{x^{2}}{t E} \equiv \frac{L^{2}}{TML^{2} T^{-2}}=\frac{1}{MT^{-1}} $

$[B]=M^{-1} T$

$[A B]=\left[M^{-1} L^{2} T\right]$

Question 4

Unpolarised light incident on transparent glass at incident angle $60^{\circ}$. If reflected ray is completely polarised, then angle of refraction is

(1) $45^{\circ}$

(2) $60^{\circ}$

(3) $30^{\circ}$

(4) $37^{\circ}$

Show Answer

Answer: (3)

Solution:

By Brewsters law

$ \begin{aligned} & \mu=\tan i \\ & \mu=\sqrt{3} \\ & \therefore \quad 1 \times \frac{\sqrt{3}}{2}=\sqrt{3} \times \sin r \\ & \sin r=\frac{1}{2} \\ & r=30^{\circ} \end{aligned} $

Question 5

Two solid spheres each of mass $2 kg$ and radius 75 $cm$ are arranged as shown. Find MOI of the system about the given axis.

(1) $3.15 kg m^{2}$

(2) $31.5 kg m^{2}$

(3) $0.9 kg m^{2}$

(4) $9 kg m^{2}$

Show Answer

Answer: (1)

Solution:

$I=\left(\frac{2}{5} M R^{2}+M R^{2}\right) \times 2$

$=\frac{14}{5} \times 2 \times \frac{9}{16}$

$=\frac{63}{20}$

$=3.15 kg m^{2}$

Question 6

If the current through an incandescent lamp decreases by $20 \%$, how much change will be there in its illumination?

(1) $36 \%$

(2) $64 \%$

(3) $20 \%$

(4) $40 \%$

Show Answer

Answer: (1)

Solution:

$p=i^{2} R$

$ p^{\prime}=0.64 i^{2} R $

Question 7

Find the speed of sound in oxygen gas at STP.

(1) $300 m / s$

(2) $350 m / s$

(3) $330 m / s$

(4) $400 m / s$

Show Answer

Answer: (3)

Solution:

$v=\sqrt{\frac{\gamma R T}{M}}=330 m / s$

Question 8

Find average power in electric circuit if source voltage $(V)=20 \sin (100 \omega t)$ and current in the circuit

$(I)=2 \sin \left(100 \omega t+\frac{\pi}{3}\right)$

(1) $10 W$

(2) $20 W$

(3) $5 W$

(4) $15.5 W$

Show Answer

Answer: (1)

Solution:

$\langle P\rangle=I V \cos \phi$

$ \begin{aligned} & =\frac{20}{\sqrt{2}} \times \frac{2}{\sqrt{2}} \times \cos 60^{\circ} \\ & =10 W \end{aligned} $

Question 9

In a photoelectric experiment, frequency $f=1.5 f _0$ ( $f _0$ : threshold frequency). If the frequency of light is changed to $f / 2$, then photocurrent becomes (intensity of light has doubled)

(1) Zero

(2) Doubled

(3) Same

(4) Thrice

Show Answer

Answer: (1)

Solution:

Since $\frac{f}{2}<f _0$

$ \Rightarrow \text { current }=0 $

Question 10

Radius of curvature of equiconvex lens is $20 cm$. Material of lens is having refractive index of 1.5. Find image distance from lens if an object is placed $10 cm$ away from the lens.

(1) $20 cm$

(2) $10 cm$

(3) $40 cm$

(4) $5 cm$

Show Answer

Answer: (1)

Solution:

$\frac{1}{f}=(\mu-1)\left(\frac{2}{R}\right) \quad f=20 cm$

$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$

$\frac{1}{v}+\frac{1}{10}=\frac{1}{20}$

Question 11

Draw truth table of given gate circuit.

(1)

$A$ $B$ $X$
0 0 0
0 1 0
1 0 0

(2)

$A$ $B$ $X$
0 0 0
0 1 0
1 0 0
1 1 0

(3)

$A$ $B$ $X$
0 0 1
0 1 0
1 0 0
1 1 0

(4)

$A$ $B$ $X$
0 0 1
0 1 0
1 0 0
1 1 1
Show Answer

Answer: (2)

Solution:

$X=\overline{(A+\bar{B})+(\bar{A}+B)}$

$ \begin{aligned} & (\overline{A+\bar{B}}) \cdot(\overline{\bar{A}+B}) \\ & (\bar{A} \cdot \overline{\bar{B}}) \cdot(\overline{\bar{A}} \cdot \bar{B}) \end{aligned} $

$(\bar{A} \cdot B) \cdot(A \cdot \bar{B})=\bar{A} \cdot B \cdot A \cdot \bar{B}=0$

Question 12

The magnetic flux through a loop varies with time as $\phi=5 t^{2}-3 t+5$. If the resistance of loop is $8 \Omega$, find the current through it at $t=2 s$

(1) $\frac{15}{8} A$

(2) $\frac{5}{8} A$

(3) $\frac{17}{8} A$

(4) $\frac{13}{8} A$

Show Answer

Answer: (3)

Solution:

$\frac{d \phi}{d t}=10 t-3$

at $t=2, V=17$

$i=\frac{V}{R}=\frac{17}{8} A$

Question 13

8 moles of oxygen and 4 moles of nitrogen are at same temperature $T$ and are mixed. The total internal energy is

(1) $60 R T$

(2) $15 R T$

(3) $30 R T$

(4) $90 R T$

Show Answer

Answer: (3)

Solution:

$U=n C _v T$

$ \begin{aligned} \Rightarrow & U=n _1 C _{v _1} T+n _2 C _{V _2} T \\ \Rightarrow & 8 \times \frac{5 R}{2} \times T+4 \times \frac{5 R}{2} \times T \\ & =30 R T \end{aligned} $

Question 14

In the system shown below, the pulley 4 string are ideal. If the acceleration of blocks is $\frac{g}{8}$, find $\frac{m _1}{m _2}$

(1) $\frac{9}{7}$

(2) $\frac{8}{7}$

(3) $\frac{5}{7}$

(4) $\frac{9}{8}$

Show Answer

Answer: (1)

Solution:

$a=\frac{\left(m _1-m _2\right) g}{\left(m _1+m _2\right)}=\frac{g}{8}$

$ \begin{aligned} & 8 m _1-8 m _2=m _1+m _2 \\ & 7 m _1=9 m _2 \\ & \frac{m _1}{m _2}=\frac{9}{7} \end{aligned} $

Question 15

The force between two charged particle placed in air at separation $x$ is $F _0$. Both the charged particle immerged in a medium of dielectric constant $K$ without changing separation between two charge, then net force on one of the particle is now

(1) $\frac{F _0}{K}$

(2) $\frac{F _0}{2 K}$

(3) $\frac{2 F _0}{K}$

(4) $F _0$

Show Answer

Answer: (1)

Solution:

In air $F=\frac{1}{4 \pi \in _0} \frac{q _1 q _2}{r _2}$

In medium $F^{\prime}=\frac{1}{4 \pi\left(k \in \in _0\right)} \frac{q _1 q _2}{r^{2}}$

$F^{\prime}=\frac{F _0}{K}$

Question 16

Two vector each of magnitude $A$ are inclined at angle $\theta$ with each other, then magnitude of resultant vector is

(1) $A \cos ^{2} \frac{\theta}{2}$

(2) $2 A \cos \frac{\theta}{2}$

(3) $2 A \cos \theta$

(4) $A \cos \frac{\theta}{2}$

Show Answer

Answer: (2)

Solution:

The magnitude of resultant vector $=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$

$(R)$

here $a=b=A$

$ \text { then } \begin{aligned} R & =\sqrt{A^{2}+A^{2}+2 A^{2} \cos \theta} \\ & =A \sqrt{2} \sqrt{1+\cos \theta} \\ & =\sqrt{2} A \sqrt{2 \cos ^{2} \frac{\theta}{2}} \\ = & 2 A \cos \frac{\theta}{2} \end{aligned} $

Question 17

Statement 1 : Electric and magnetic energy density in electromagnetic waves are equal.

Statement 2 : Electromagnetic waves exert pressure on a surface.

(1) Statement 1 is true \& Statement 2 is true and is correct explanation of Statement 1

(2) Statement 1 is true \& Statement 2 is true but is not correct explanation of Statement 1

(3) Statement 1 is true but Statement 2 is false

(4) Statement 1 is false but Statement 2 is true

Show Answer

Answer: (2)

Solution:

$\frac{1}{2} \varepsilon _0 E^{2}=\frac{B^{2}}{2 \mu _0}$

$\because E=C B$ and $C=\frac{1}{\mu _0 \varepsilon _0}$

Question 18

A pendulum completes 50 oscillations in 40 seconds. If the length of pendulum is $(20 \pm 0.2) cm$ and resolution of watch is 1 second, find the percentage error in calculation of $g$.

(1) $7 \%$

(2) $3 \%$

(3) $6 \%$

(4) $4 \%$

Show Answer

Answer: (3)

Solution:

$T=2 \pi \sqrt{\frac{l}{g}}$

$g=\frac{4 \pi^{2} I}{T^{2}}$

$ \begin{aligned} \frac{\Delta g}{g} & =\frac{\Delta l}{l}+\frac{2 \Delta T}{T} \\ & =\frac{0.2}{20}+2\left(\frac{1}{40}\right) \\ & =6 \% \end{aligned} $

Question 19

The period of oscillation of system shown below is $\pi \sqrt{\frac{\alpha m}{5 k}}$ then $\alpha$ is

Show Answer

Answer: (12)

Solution:

$k _{e q}=\frac{2 k \cdot k}{3 k}+k=\frac{5 k}{3}$

Angular frequency of oscillation $(\omega)=\sqrt{\frac{k _{e q}}{m}}$

$\omega=\sqrt{\frac{5 k}{3 m}}$

Period of oscillation $(\tau)=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{3 m}{5 k}}$

$ =\pi \sqrt{\frac{12 m}{5 k}} $

Question 20

In the given circuit, $r=2 \Omega$. The power dissipated in the circuit is W.

Show Answer

Answer: (2)

Solution:

$R _{eq}=r$

$\therefore \quad P=\frac{V^{2}}{r}=\frac{4}{2}=2 W$

Question 21

A body of mass $m$ is projected with speed $u$ at angle $45^{\circ}$ with horizontal. The angular momentum of body, about point of projection when body is at highest point, is $\frac{\sqrt{2} m u^{3}}{x g}$ find $x$,

Show Answer

Answer: (8)

Solution:

$L=m u \cos \theta \frac{u^{2} \sin ^{2} \theta}{2 g}$

$ =m u^{3} \frac{1}{4 \sqrt{2} g} \Rightarrow x=8 $

Question 22

Mass of moon is $\frac{1}{81}$ times the mass of a planet and radius is $\frac{1}{9}$ times the radius of the planet. The ratio of escape speed from planet to escape speed from moon is

Show Answer

Answer: (3)

Solution:

$v _{\text {esc }}=\sqrt{\frac{2 G M}{R}}$

$ \Rightarrow \text { Ratio }=\sqrt{\frac{81}{9}}=3 $

Question 23

Find the mass number of an atom whose radius is half of that of a given atom of mass number 192.

Show Answer

Answer: (24)

Solution:

$r=R _0(192)^{\frac{1}{3}}$

$ \begin{aligned} & \frac{r}{2}=R _0(m)^{\frac{1}{3}} \\ & m=\frac{192}{8}=24 \end{aligned} $