### Matrices Question 12

#### Question 12 - 31 January - Shift 1

Let $A= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix}$ Then the sum of the diagonal elements of the matrix $(A+I)^{11}$ is equal to:

(1) 6144

(2) 4094

(3) 4097

(4) 2050

## Show Answer

#### Answer: (3)

#### Solution:

#### Formula: Properties of Matrix Multiplication, Properties of Positive Integral Powers Of A SQUARE MATRIX, Properties of Trace of matrix

$\begin{aligned} & A^2=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{array}\right] \\ & =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{array}\right]=A \\ & \Rightarrow A^3=A^4=\ldots \ldots=A \\ & (A+I)^{11}={ }^{11} C_0 A^{11}+{ }^{11} C_1 A^{10}+ \\ & \text {….. }{ }^{11} C _{10} A+{ }^{11} C _{11} I \\ & =\left({ }^{11} C_0+{ }^{11} C_1+\ldots . .{ }^{11} C _{10}\right) A+I \\ & =\left(2^{11}-1\right) A+I=2047 A+I \\ & \therefore \text { Sum of diagonal elements }=2047(1+4-3)+3 \\ & =4094+3=4097 \\ & \end{aligned}$