NEET Solved Paper 2018 Question 3

Question: At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth’s atmosphere? (Given: Mass of oxygen molecule $ \text{(m)=2}\text{.76 }\times\text{ 1}{0^{\text{–26}}}kg $ Boltzmann’s constant $ {k_B}\text{=1}\text{.38 }\times\text{ 1}{0^{\text{–23}}}J{K^{\text{–1}}}\text{)} $ [NEET - 2018]

Options:

A) $ 5\text{.016 }\times\text{ 1}{0^{4}}\text{ K} $

B) $ 8\text{.360 }\times\text{ 1}{0^{4}}\text{ K} $

C) $ 2\text{.508 }\times\text{ 1}{0^{4}}\text{ K} $

D) $ 1\text{.254 }\times\text{ 1}{0^{4}}\text{ K} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {V _{escape}}\text{=11200 m/s} $ Say at temperature T it attains $ {V _{escape}} $
    So, $ \sqrt{\frac{3{k_B}T}{{m _{{O_2}}}}}=11200m/s $
    On solving, $ \text{T=8}\text{.360 }\times\text{ 1}{0^{4}}\text{ K} $