Neet Solved Paper 2015 Question 31

Question: A wire carrying current $ I $ has the shape as shown in adjoining figure. Linear parts of the wire are very long and parallel to X-axis while semicircular portion of radius B. is lying in Y-Z plane. Magnetic field at point O is

Options:

A) $ \mathbf{B}=\frac{{\mu _0}}{4\pi }\frac{l}{R}(\pi \hat{i}+2\hat{k}) $

B) $ \mathbf{B}=-\frac{{\mu _0}}{4\pi }\frac{l}{R}(\pi \hat{i}-2\hat{k}) $

C) $ \mathbf{B}=-\frac{{\mu _0}}{4\pi }\frac{l}{R}(\pi \hat{i}+2\hat{k}) $

D) $ \mathbf{B}=\frac{{\mu _0}}{4\pi }\frac{l}{R}(\pi \hat{i}-2\hat{k}) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • The magnetic field in the different regions is given by $ {{\mathbf{B}}_1}=\frac{{\mu _0}}{4\pi }\times \frac{I}{R}(-\mathbf{\hat{k}}) $ $ {{\mathbf{B}}_3}=\frac{{\mu _0}I}{4\pi R}(-\mathbf{\hat{k}}) $ $ {{\mathbf{B}}_2}=\frac{{\mu _0}I}{4\pi R}(-\mathbf{\hat{i}}) $ The net magnetic field at the centre O is $ \mathbf{B}={{\mathbf{B}} _{\mathbf{1}}}+{{\mathbf{B}} _{\mathbf{2}}}+{{\mathbf{B}} _{\mathbf{3}}} $ $ =\frac{{\mu _0}I}{4\pi R}(-2\hat{k})+\frac{{\mu _0}I}{4R}(-\hat{i})=-\frac{{\mu _o}I}{4\pi R}(2\hat{k}+\pi \hat{i}) $