NEET Solved Paper 2014 Question 10

Question: Using the Gibbs energy change $ \Delta {G^{{}^\circ }}=+63.3kJ $ for the following reaction, $ Ag _2CO _3(s)r,2A{g^{+}}(aq)+CO_3^{2-}(aq) $ the $ K _{sp} $ of $ Ag _2CO _3(s) $ in water at $ 25^{o}C $ is $ (R=8.314J{K^{-1}}mo{l^{-1}}) $ [AIPMT 2014]

Options:

A) $ 3.2\times {10^{-26}} $

B) $ 8.0\times {10^{-12}} $

C) $ 2.9\times {10^{-3}} $

D) $ 7.9\times {10^{-2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \Delta {G^{{}^\circ }} $ is related to $ K _{sp} $ by the equation, $ \Delta {G^{{}^\circ }}=-2.303RT,\log K _{sp} $ Given, $ \Delta {G^{{}^\circ }}=+,63.3\text{kJ=63}\text{.3}\times 1{0^{3}}J $ Thus, substitute $ \Delta {G^{{}^\circ }}=63.3\times 10^{3}\text{J,} $ $ R=8.314J{K^{-1}}mo{l^{-1}} $ and $ T=298K,[25+273K] $ into the . above equation to get, $ 63.3\times 10^{3}=-2.303\times 8.314\times 298,log,K _{sp} $
    $ \therefore $ $ \log ,K _{sp}=-11.09 $
    $ \Rightarrow ,K _{sp}=\text{antilog(-11}\text{.09)} $ $ K _{sp}=8.0\times {10^{-12}} $