Work Energy and Power - Result Question 3

5. A uniform force of $(3 \hat{i}+\hat{j})$ newton acts on a particle of mass $2 kg$. The particle is displaced from position $(2 \hat{i}+\hat{k})$ meter to position $(4 \hat{i}+3 \hat{j}-\hat{k})$ meter. The work done by the force on the particle is

[2013]

(a) $6 J$

(b) $13 J$

(c) $15 J$

(d) $9 J$

Show Answer

Answer:

Correct Answer: 5. (d)

Solution:

  1. (d) Given : $\overrightarrow{{}F}=3 \hat{i}+\hat{j}$

$ \vec{r} _1=(2 \hat{i}+\hat{k}), \quad \vec{r} _2=(4 \hat{i}+3 \hat{j}-\vec{k})$

$\vec{r}= \vec{r} _2- \vec{r} _1=(4 \hat{i}+3 \hat{j}-\vec{k})-(2 \hat{i}+\hat{k})$

or $\vec{r}=2 \hat{i}+3 \hat{j}-2 \hat{k}$

So work done by the given force, $w=\vec{f} \cdot \vec{r}$

$=(3 \hat{i}+\hat{j}) \cdot(2 \hat{i}+3 \hat{j}-2 \hat{k})=6+3=9 J$