Work Energy and Power - Result Question 19

21. A body of mass $1 kg$ is thrown upwards with a velocity $20 m / s$. It momentarily comes to rest after attaining a height of $18 m$. How much energy is lost due to air friction? $(g=10$ $m / s^{2}$ )

[2009]

(a) $30 J$

(b) $40 J$

(c) $10 J$

(d) $20 J$

Show Answer

Answer:

Correct Answer: 21. (d)

Solution:

  1. (d) When the body is thrown upwards. its K.E is converted into P.E.

The loss of energy due to air friction is the difference of K.E and P.E.

$ \begin{aligned} \frac{1}{2} mv^{2}-mgh= & \frac{1}{2} \times 1 \times 400-1 \times 18 \times 10 \\ & =200-180=20 J \end{aligned} $

22 .

(b) $E=\frac{p^{2}}{2 m}$

or, $E_1=\frac{p_1^{2}}{2 m_1}, E_2=\frac{p_2^{2}}{2 m_2}$

or, $m_1=\frac{p_1^{2}}{2 E_1}, m_2=\frac{p_2^{2}}{2 E_2}$

$m_1>m_2 \Rightarrow \frac{m_1}{m_2}>1$

$\therefore \frac{p_1^{2} E_2}{E_1 P_2^{2}}>1 \Rightarrow \frac{E_2}{E_1}>1 \quad[\because p_1=p_2]$

or, $E_2>E_1$

Kinetic energy of body of mass $m$ moving with velocity $v$ is

$ \text{ K.E. }=\frac{1}{2} m v^{2} $

$\Rightarrow$ K.E. $=\frac{1}{2} \frac{m v^{2} \times m}{m}$

[Multiplying both numerator and denominator by $m$ ]

$\Rightarrow$ K.E. $=\frac{1}{2} \frac{m^{2} v^{2}}{m}$

$\Rightarrow$ K.E. $=\frac{1}{2} \frac{p^{2}}{m} \quad[\because$ Momentum, $P=m v]$

$\Rightarrow P^{2}=2 m$ K.E.

$\Rightarrow P=\sqrt{2 m K . E}$.