Thermal Properties of Matter - Result Question 31

32. Which of the following circular rods (given radius $r$ and length $l$ ), each made of the same material and whose ends are maintained at the same temperature will conduct most heat?

[2005]

(a) $r=r_0 ; l=l_0$

(c) $r=r_0 ; l=2 l_0$

(b) $r=2 r_0 ; l=l_0$

(d) $r=2 r_0 ; l=2 l_0$

Show Answer

Answer:

Correct Answer: 32. (b)

Solution:

  1. (b) From given option

(i) $r=2 r_0, l=2 l_0$

$ \therefore R=\frac{2 \ell_0}{K \pi(2 r_0)^{2}}=\frac{\ell_0}{2 K \pi r_0^{2}} $

(ii) $r=2 r_0, l=l_0$

$ \therefore R=\frac{\ell_0}{K \pi(2 r_0)^{2}}=\frac{\ell_0}{4 K \pi r_0^{2}} $

(iii) $r=r_0, l=2 l_0$

$ \therefore R=\frac{2 \ell_0}{K \pi r_0^{2}}=\frac{2 \ell_0}{K \pi r_0^{2}} $

(iv) $r=r_0, l=l_0$

$ \therefore R=\frac{\ell_0}{K \pi r_0^{2}}=\frac{\ell_0}{K \pi r_0^{2}} $

It is clear that for option (b) resistance is minimum, hence, heat flow will be maximum.

(i) Rate of heat flow is directly proportional to area

(ii) inversely proportional to length.

$\therefore$ Heat flow will be maximum when $r$ is maximum and $\ell$ is minimum. We know that $Q=\frac{T_H-T_L}{R}$

Also, Thermal resistance $R=\frac{\ell}{K A}=\frac{\ell}{K \pi r^{2}}$

Heat flow will be maximum when thermal resistance is minimum.