System of Particles and Rotational Motion - Result Question 35

35. A circular disk of moment of inertia $I_t$ is rotating in a horizontal plane, its symmetry axis, with a constant angular speed $\omega_i$. Another disk of moment of inertia $I_b$ is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed $\omega_f$. The energy lost by the initially rotating disk to friction is:

[2010]

(a) $\frac{1}{2} \frac{I_b^{2}}{(I_t+I_b)} \omega_i^{2}$

(b) $\frac{I_t^{2}}{(I_t+I_b)} \omega_i^{2}$

(c) $\frac{I_b-I_t}{(I_t+I_b)} \omega_i^{2}$

(d) $\frac{1}{2} \frac{I_b I_t}{(I_t+I_b)} \omega_i^{2}$

Show Answer

Answer:

Correct Answer: 35. (d)

Solution:

  1. (d) By conservation of angular momentum, $I_t \omega_i=(I_t+I_b) \omega_f$

where $\omega_f$ is the final angular velocity of disks

$ \therefore \quad \omega_f=(\frac{I_t}{I_t+I_b}) \omega_i $

Loss in K.E., $\Delta K=$ Initial K.E. - Final K.E.

$ =\frac{1}{2} I_t \omega_i^{2}-\frac{1}{2}(I_t+I_b) \omega_f^{2} $

$=\frac{1}{2} I_t \omega_i^{2}-\frac{1}{2}(I_t+I_b) \frac{I_t^{2}}{(I_t+I_b)^{2}} \omega_i^{2}$

$=\frac{1}{2} \omega_i^{2} \frac{I_t}{I_t+I_b}(I_t+I_b-I_t)=\frac{1}{2} \omega_i^{2} \frac{I_t I_b}{I_t+I_b}$

(a) In absence of external torque, $L=I \omega$ $=$ constant

$I_1 \omega_1=I_2 \omega_2, I_1=MR^{2}, I_2=MR^{2}+2 mR^{2}$

(Moment of inertia of a thin circular ring about an axis vertical to its plane $=MR^{2}$ )

$\therefore \quad \omega_2=\frac{I_1}{I_2} \omega=\frac{M}{M+2 m} \omega$.

(b) $\vec{\tau}=\overrightarrow{{}r} \times \overrightarrow{{}F} \Rightarrow \overrightarrow{{}r} \cdot \vec{\tau}=0$

$\overrightarrow{{}F} \cdot \vec{\tau}=0$

Since, $\vec{\tau}$ is perpendicular to the plane of $\overrightarrow{{}r}$ and $\overrightarrow{{}F}$, hence the dot product of $\vec{\tau}$ with $\overrightarrow{{}r}$ and $\overrightarrow{{}F}$ is zero.

Radial component of force makes no contribution to the torque. Only transverse component of force contributes to the torque.