System of Particles and Rotational Motion - Result Question 27

27. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$. The value of $\alpha$ for which angular momentum about origin is conserved is :

[2015 RS]

(a) 2

(b) zero

(c) 1

(d) -1

Show Answer

Answer:

Correct Answer: 27. (d)

Solution:

  1. (d) From Newton’s second law for rotational motion,

$\vec{\tau}=\frac{d \overrightarrow{{}L}}{dt}$, if $\overrightarrow{{}L}=$ constant then $\vec{\tau}=0$

So, $\vec{\tau}=\overrightarrow{{}r} \times \overrightarrow{{}F}=0$

$(2 \hat{i}-6 \hat{j}-12 \hat{k}) \times(\alpha \hat{i}+3 \hat{j}+6 \hat{k})=0$

Solving we get $\alpha=-1$