Physical World Units and Measurements - Result Question 31

33. The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $k$ is given by a relation of the type $f=c m^{x} k^{y}$, where $c$ is a dimensionless constant. The values of $x$ and $y$ are

[1990]

(a) $x=\frac{1}{2}, y=\frac{1}{2}$

(b) $x=-\frac{1}{2}, y=-\frac{1}{2}$

(c) $x=\frac{1}{2}, y=-\frac{1}{2}$

(d) $x=-\frac{1}{2}, y=\frac{1}{2}$

Show Answer

Answer:

Correct Answer: 33. (d)

Solution:

  1. (d) $f=c m^{x} k^{y}$;

Spring constant $k=$ force/length.

$[M^{0} L^{0} T^{-1}]=[M^{x}][MT^{-2}]^{y}=[M^{x+y} T^{-2 y}]$

$\Rightarrow x+y=0,-2 y=-1$ or $y=\frac{1}{2}$

Therefore, $x=-\frac{1}{2}$

The method of dimensions cannot be used to derive relations other than product of power functions.