Oscillations - Result Question 24

«««< HEAD:content/english/neet-pyq-chapterwise/physics/oscillations/oscillations-result-question-24.md

27. The particle executing simple harmonic motion has a kinetic energy $K_0 \cos ^{2} \omega t$. The maximum values of the potential energy and the total energy are respectively

======= ####27. The particle executing simple harmonic motion has a kinetic energy $K_0 \cos ^{2} \omega t$. The maximum values of the potential energy and the total energy are respectively

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/oscillations/oscillations—result-question-24.md (a) $K_0 / 2$ and $K_0$

(c) $K_0$ and $K_0$

(b) $K_0$ and $2 K_0$

(d) 0 and $2 K_0$.

[2007]

Show Answer

Answer:

Correct Answer: 27. (c)

Solution:

  1. (c) We have, $U+K=E$ where, $U=$ potential energy, $K=$ Kinetic energy, $E=$ Total energy.

Also, we know that, in S.H.M., when potential energy is maximum, K.E. is zero and vice-versa.

$\therefore U _{\max }+0=E \Rightarrow U _{\max }=E$

Further,

$K . E .=\frac{1}{2} m \omega^{2} a^{2} \cos ^{2} \omega t$

But by question, $K . E .=K_0 \cos ^{2} \omega t$

$\therefore K_0=\frac{1}{2} m \omega^{2} a^{2}$

Hence, total energy, $E=\frac{1}{2} m \omega^{2} a^{2}=K_0$

$\therefore U _{\max }=K_0 & E=K_0$.