Motion in a Straight Line - Result Question 29

30. A particle moves along a straight line such that its displacement at any time $t$ is given by $s=(t^{3}-6 t^{2}+3 t+4)$ metres

The velocity when the acceleration is zero is

(a) $3 ms^{-1}$

(b) $-12 ms^{-1}$

(c) $42 ms^{-2}$

(d) $-9 ms^{-1}$

[1994]

Show Answer

Answer:

Correct Answer: 30. (d)

Solution:

(d) Velocity, $v=\frac{d s}{d t}=3 t^{2}-12 t+3$

Acceleration, $a=\frac{d v}{d t}=6 t-12$; For $a=0$, we have, $0=6 t-12$ or $t=2 s$. Hence, at $t=2 s$ the velocity will be

$v=3 \times 2^{2}-12 \times 2+3=-9 ms^{-1}$