Motion in a Straight Line - Result Question 25

«««< HEAD:content/english/neet-pyq-chapterwise/physics/motion-in-a-straight-line/motion-in-a-straight-line-result-question-25.md

26. A car moving with a speed of $40 km / h$ can be stopped by applying brakes at least after $2 m$. If the same car is moving with a speed of $80 km / h$, what is the minimum stopping distance?[1998]

======= ####26. A car moving with a speed of $40 km / h$ can be stopped by applying brakes at least after $2 m$. If the same car is moving with a speed of $80 km / h$, what is the minimum stopping distance?[1998]

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/motion-in-a-straight-line/motion-in-a-straight-line—result-question-25.md (a) $8 m$

(b) $6 m$

(c) $4 m$

(d) $2 m$

Show Answer

Answer:

Correct Answer: 26. (a)

Solution:

  1. (a) $v^{2}-u^{2}=2 a s$

$ \begin{aligned} \Rightarrow a & =\frac{v^{2}-u^{2}}{2 s} \\ & =-\frac{u_1^{2}}{2 s} \end{aligned} $

For same retarding force $s \propto u^{2}$

$\because \frac{s_2}{s_1}=\frac{u_2^{2}}{u_1^{2}} \Rightarrow \frac{s_2}{s_1}=(\frac{80}{40})^{2}=4$

$\therefore s_2=4 s_1=8 m$

If $F$ is retarding force and $s$ the stopping distance, then $\frac{1}{2} m v^{2}=F S$

For same retarding force, $s \alpha v^{2}$

$ \therefore \quad \frac{s_2}{s_1}=(\frac{v_2}{v_1})^{2}=(\frac{80 km / h}{40 km / h})^{2}=4 $

$\therefore \quad s_2=4 s_1=4 \times 2=8 m$