Motion in a Plane - Result Question 27

30. The position vector of a particle is $\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}$. The velocity of the particle is

[1995]

(a) directed towards the origin

(b) directed away from the origin

(c) parallel to the position vector

(d) perpendicular to the position vector

Show Answer

Answer:

Correct Answer: 30. (d)

Solution:

  1. (d) Position vector,

$\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}$

Velocity vector,

$\vec{v}=\frac{d(\vec{r})}{d t}=\frac{d}{d t}{(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}}$

$=(-a \omega \sin \omega t) \hat{i}+(a \omega \cos \omega t) \hat{j}$

$=\omega[(-a \sin \omega t) \hat{i}+(a \cos \omega t) \hat{j}]$

Slope of position vector $=\frac{a \sin \omega t}{a \cos \omega t}=\tan \omega t$

Slope of velocity vector, $=\frac{-a \cos \omega t}{a \sin \omega t}=\frac{-1}{\tan \omega t}$

$\therefore$ velocity is perpendicular to the displacement.