Motion in a Plane - Result Question 24

«««< HEAD:content/english/neet-pyq-chapterwise/physics/motion-in-a-plane/motion-in-a-plane-result-question-24.md

26. A particle starting from the origin $(0,0)$ moves in the $(x, y)$ plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the $x$-axis an angle of

======= ####26. A particle starting from the origin $(0,0)$ moves in the $(x, y)$ plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the $x$-axis an angle of

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/motion-in-a-plane/motion-in-a-plane—result-question-24.md (a) $45^{\circ}$

(b) $60^{\circ}$

(c) $0^{\circ}$

(d) $30^{\circ}$

[2007]

Show Answer

Answer:

Correct Answer: 26. (b)

Solution:

(b)

Let $\theta$ be the angle which the particle makes with $x$-axis.

From figure, $\tan \theta=\frac{3}{\sqrt{3}}=\sqrt{3}$

$\Rightarrow \theta=\tan ^{-1}(\sqrt{3})=60^{\circ}$

If a vector $\vec{R}$ in $X-Y$ plane then its orthogonal vector $R_X=R \cos \theta$ and $R_Y=R \sin \theta$.

$ \text{ And } \frac{R \sin \theta}{R \cos \theta}=\tan \theta=\frac{R_Y}{R_X} $