Motion in a Plane - Result Question 1

«««< HEAD:content/english/neet-pyq-chapterwise/physics/motion-in-a-plane/motion-in-a-plane-result-question-1.md

1. The moment of the force, $\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by [2018]

======= ####1. The moment of the force, $\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by [2018]

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/motion-in-a-plane/motion-in-a-plane—result-question-1.md (a) $-8 \hat{i}-4 \hat{j}-7 \hat{k}$

(b) $-4 \hat{i}-\hat{j}-8 \hat{k}$

(c) $-7 \hat{i}-4 \hat{j}-8 \hat{k}$

(d) $-7 \hat{i}-8 \hat{j}-4 \hat{k}$

Show Answer

Solution:

  1. (c) Moment of force, $\vec{\tau}=\vec{r} \times \vec{F}$

$\vec{\tau}=(\vec{r}- \vec{r} _0) \times \vec{F}$

$\vec{r}- \vec{r} _0=(2 \hat{i}+0 \hat{j}-3 \hat{k})-(2 \hat{i}-2 \hat{j}-2 \hat{k})$

$=0 \hat{i}+2 \hat{j}-\hat{k}$

$\vec{\tau}=(0 \hat{i}+2 \hat{j}-\hat{k})(4 \hat{i}+5 \hat{j}-6 \hat{k})$

$\vec{\tau}= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ 4 & 5 & -6\end{vmatrix} =-7 \hat{i}-4 \hat{j}-8 \hat{k}$