Kinetic Theory - Result Question 13

«««< HEAD:content/english/neet-pyq-chapterwise/physics/kinetic-theory/kinetic-theory-result-question-13.md

13. The molecules of a given mass of a gas have r.m.s. velocity of $200 ms^{-1}$ at $27^{\circ} C$ and $1.0 \times 10^{5}$ $Nm^{-2}$ pressure. When the temperature and pressure of the gas are respectively, $127^{\circ} C$ and $0.05 \times 10^{5} Nm^{-2}$, the r.m.s. velocity of its molecules in $ms^{-1}$ is :

======= ####13. The molecules of a given mass of a gas have r.m.s. velocity of $200 ms^{-1}$ at $27^{\circ} C$ and $1.0 \times 10^{5}$ $Nm^{-2}$ pressure. When the temperature and pressure of the gas are respectively, $127^{\circ} C$ and $0.05 \times 10^{5} Nm^{-2}$, the r.m.s. velocity of its molecules in $ms^{-1}$ is :

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/kinetic-theory/kinetic-theory—result-question-13.md (a) $100 \sqrt{2}$

(b) $\frac{400}{\sqrt{3}}$

(c) $\frac{100 \sqrt{2}}{3}$

(d) $\frac{100}{3}$

Show Answer

Answer:

Correct Answer: 13. (b)

Solution:

  1. (b) Here $v_1=200 m / s$;

temperature $T_1=27^{\circ} C=27+273=300 k$

temperature $T_2=127^{\circ} C=127+273=400{k, v_2}=$ ?

R.M.S. Velocity, $v \propto \sqrt{T}$

$\Rightarrow \frac{v_2}{200}=\sqrt{\frac{400}{300}}$

$\Rightarrow v_2=\frac{200 \times 2}{\sqrt{3}} m / s \Rightarrow v_2=\frac{400}{\sqrt{3}} m / s$