Gravitation - Result Question 50

53. The escape velocity of a body on the surface of the earth is $11.2 km / s$. If the earth’s mass increases to twice its present value and the radius of the earth becomes half, the escape velocity would become

[1997]

(a) $44.8 km / s$

(b) $22.4 km / s$

(c) $11.2 km / s$ (remains unchanged)

(d) $5.6 km / s$

Show Answer

Answer:

Correct Answer: 53. (b)

Solution:

  1. (b) Escape velcocity

$v_e=\sqrt{\frac{2 G M_e}{R_e}}, v_e^{\prime}=\sqrt{\frac{2 G M_e^{\prime}}{R_e^{\prime}}}$

$\therefore \frac{v_e^{\prime}}{v_e}=\sqrt{\frac{M_e^{\prime}}{M_e} \times \frac{R_e}{R_e^{\prime}}}$

Given $M_e^{\prime}=2 M_e$ and $R_e^{\prime}=\frac{R_e}{2}$

$\therefore \frac{v_e^{\prime}}{v_e}=\sqrt{\frac{2 M_e}{M_e} \times \frac{R_e}{R_e / 2}}=\sqrt{4}=2$

$v_e^{\prime}=2 v_e=2 \times 11.2=22.4 km / s$