Gravitation - Result Question 48

«««< HEAD:content/english/neet-pyq-chapterwise/physics/gravitation/gravitation-result-question-48.md

51. The escape velocity on the surface of earth is $11.2 km / s$. What would be the escape velocity on the surface of another planet of the same mass but $1 / 4$ times the radius of the earth?

======= ####51. The escape velocity on the surface of earth is $11.2 km / s$. What would be the escape velocity on the surface of another planet of the same mass but $1 / 4$ times the radius of the earth?

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/gravitation/gravitation—result-question-48.md (a) $22.4 km / s$

(b) $44.8 km / s[2000]$

(c) $5.6 km / s$

(d) $11.2 km / s$

Show Answer

Answer:

Correct Answer: 51. (a)

Solution:

  1. (a) $v _{\text{earth }}=\sqrt{\frac{2 G M_e}{R_e}}$

$v _{\text{planet }}=\sqrt{\frac{2 G M_p}{R_p}}=\sqrt{\frac{2 G M_e}{R_e / 4}}=\sqrt{\frac{8 G M_e}{R_e}}$ $\frac{v _{\text{planet }}}{v _{\text{earth }}}=\sqrt{\frac{8 G M_e}{R_e}} \times \sqrt{\frac{R_e}{2 G M_e}}=2$

$\therefore v _{\text{planet }}=2 \times v _{\text{earth }}=2 \times 11.2=22.4 km / s$