Gravitation - Result Question 42

«««< HEAD:content/english/neet-pyq-chapterwise/physics/gravitation/gravitation-result-question-42.md

======= ####45. If $v_e$ is escape velocity and $v_0$ is orbital velocity of a satellite for orbit close to the earth’s surface, then these are related by : [2012M]

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/gravitation/gravitation—result-question-42.md (a) $v_0=\sqrt{2} v_e$

(b) $v_0=v_e$

(c) $v_e=\sqrt{2 v_0}$

(d) $v_e=\sqrt{2} v_0$

Show Answer

Answer:

Correct Answer: 45. (d)

Solution:

(d) $v_e=\sqrt{\frac{2 G M}{R}} \Rightarrow v_0=\sqrt{\frac{G M}{R}}$

$v_e=\sqrt{2} v_0$

The orbital velocity of a satellite at a height $h$ above the surface of earth,

$v_0=\sqrt{\frac{G M}{(R+h)}}=\sqrt{\frac{g R^{2}}{(R+h)}}(\because G M=g R^{2})$

Here, $M=$ mass of earth,

$R=$ radius of earth,

$g=$ acceleration due to If the satellite is very close to the surrface of earth gravity earth on surface of then $h=0$

$\therefore \quad v_0=\sqrt{\frac{g R^{2}}{R}}=\sqrt{g R}=\sqrt{\frac{G M}{R}}$